10,903 research outputs found

    A robust machine learning method for cell-load approximation in wireless networks

    Full text link
    We propose a learning algorithm for cell-load approximation in wireless networks. The proposed algorithm is robust in the sense that it is designed to cope with the uncertainty arising from a small number of training samples. This scenario is highly relevant in wireless networks where training has to be performed on short time scales because of a fast time-varying communication environment. The first part of this work studies the set of feasible rates and shows that this set is compact. We then prove that the mapping relating a feasible rate vector to the unique fixed point of the non-linear cell-load mapping is monotone and uniformly continuous. Utilizing these properties, we apply an approximation framework that achieves the best worst-case performance. Furthermore, the approximation preserves the monotonicity and continuity properties. Simulations show that the proposed method exhibits better robustness and accuracy for small training sets in comparison with standard approximation techniques for multivariate data.Comment: Shorter version accepted at ICASSP 201

    Open-ended Learning in Symmetric Zero-sum Games

    Get PDF
    Zero-sum games such as chess and poker are, abstractly, functions that evaluate pairs of agents, for example labeling them `winner' and `loser'. If the game is approximately transitive, then self-play generates sequences of agents of increasing strength. However, nontransitive games, such as rock-paper-scissors, can exhibit strategic cycles, and there is no longer a clear objective -- we want agents to increase in strength, but against whom is unclear. In this paper, we introduce a geometric framework for formulating agent objectives in zero-sum games, in order to construct adaptive sequences of objectives that yield open-ended learning. The framework allows us to reason about population performance in nontransitive games, and enables the development of a new algorithm (rectified Nash response, PSRO_rN) that uses game-theoretic niching to construct diverse populations of effective agents, producing a stronger set of agents than existing algorithms. We apply PSRO_rN to two highly nontransitive resource allocation games and find that PSRO_rN consistently outperforms the existing alternatives.Comment: ICML 2019, final versio

    Knowledge Spaces and the Completeness of Learning Strategies

    Get PDF
    We propose a theory of learning aimed to formalize some ideas underlying Coquand's game semantics and Krivine's realizability of classical logic. We introduce a notion of knowledge state together with a new topology, capturing finite positive and negative information that guides a learning strategy. We use a leading example to illustrate how non-constructive proofs lead to continuous and effective learning strategies over knowledge spaces, and prove that our learning semantics is sound and complete w.r.t. classical truth, as it is the case for Coquand's and Krivine's approaches
    • …
    corecore