43 research outputs found

    The Erd\H{o}s-Rothschild problem on edge-colourings with forbidden monochromatic cliques

    Get PDF
    Let k:=(k1,,ks)\mathbf{k} := (k_1,\dots,k_s) be a sequence of natural numbers. For a graph GG, let F(G;k)F(G;\mathbf{k}) denote the number of colourings of the edges of GG with colours 1,,s1,\dots,s such that, for every c{1,,s}c \in \{1,\dots,s\}, the edges of colour cc contain no clique of order kck_c. Write F(n;k)F(n;\mathbf{k}) to denote the maximum of F(G;k)F(G;\mathbf{k}) over all graphs GG on nn vertices. This problem was first considered by Erd\H{o}s and Rothschild in 1974, but it has been solved only for a very small number of non-trivial cases. We prove that, for every k\mathbf{k} and nn, there is a complete multipartite graph GG on nn vertices with F(G;k)=F(n;k)F(G;\mathbf{k}) = F(n;\mathbf{k}). Also, for every k\mathbf{k} we construct a finite optimisation problem whose maximum is equal to the limit of log2F(n;k)/(n2)\log_2 F(n;\mathbf{k})/{n\choose 2} as nn tends to infinity. Our final result is a stability theorem for complete multipartite graphs GG, describing the asymptotic structure of such GG with F(G;k)=F(n;k)2o(n2)F(G;\mathbf{k}) = F(n;\mathbf{k}) \cdot 2^{o(n^2)} in terms of solutions to the optimisation problem.Comment: 16 pages, to appear in Math. Proc. Cambridge Phil. So

    Properly coloured copies and rainbow copies of large graphs with small maximum degree

    Full text link
    Let G be a graph on n vertices with maximum degree D. We use the Lov\'asz local lemma to show the following two results about colourings c of the edges of the complete graph K_n. If for each vertex v of K_n the colouring c assigns each colour to at most (n-2)/22.4D^2 edges emanating from v, then there is a copy of G in K_n which is properly edge-coloured by c. This improves on a result of Alon, Jiang, Miller, and Pritikin [Random Struct. Algorithms 23(4), 409-433, 2003]. On the other hand, if c assigns each colour to at most n/51D^2 edges of K_n, then there is a copy of G in K_n such that each edge of G receives a different colour from c. This proves a conjecture of Frieze and Krivelevich [Electron. J. Comb. 15(1), R59, 2008]. Our proofs rely on a framework developed by Lu and Sz\'ekely [Electron. J. Comb. 14(1), R63, 2007] for applying the local lemma to random injections. In order to improve the constants in our results we use a version of the local lemma due to Bissacot, Fern\'andez, Procacci, and Scoppola [preprint, arXiv:0910.1824].Comment: 9 page

    Hamiltonicity and σ\sigma-hypergraphs

    Get PDF
    We define and study a special type of hypergraph. A σ\sigma-hypergraph H=H(n,r,qH= H(n,r,q \mid σ\sigma), where σ\sigma is a partition of rr, is an rr-uniform hypergraph having nqnq vertices partitioned into n n classes of qq vertices each. If the classes are denoted by V1V_1, V2V_2,...,VnV_n, then a subset KK of V(H)V(H) of size rr is an edge if the partition of rr formed by the non-zero cardinalities \mid KK \cap ViV_i \mid, 1in 1 \leq i \leq n, is σ\sigma. The non-empty intersections KK \cap ViV_i are called the parts of KK, and s(σ)s(\sigma) denotes the number of parts. We consider various types of cycles in hypergraphs such as Berge cycles and sharp cycles in which only consecutive edges have a nonempty intersection. We show that most σ\sigma-hypergraphs contain a Hamiltonian Berge cycle and that, for ns+1n \geq s+1 and qr(r1)q \geq r(r-1), a σ\sigma-hypergraph HH always contains a sharp Hamiltonian cycle. We also extend this result to kk-intersecting cycles
    corecore