406 research outputs found

    3D face tracking and multi-scale, spatio-temporal analysis of linguistically significant facial expressions and head positions in ASL

    Full text link
    Essential grammatical information is conveyed in signed languages by clusters of events involving facial expressions and movements of the head and upper body. This poses a significant challenge for computer-based sign language recognition. Here, we present new methods for the recognition of nonmanual grammatical markers in American Sign Language (ASL) based on: (1) new 3D tracking methods for the estimation of 3D head pose and facial expressions to determine the relevant low-level features; (2) methods for higher-level analysis of component events (raised/lowered eyebrows, periodic head nods and head shakes) used in grammatical markings—with differentiation of temporal phases (onset, core, offset, where appropriate), analysis of their characteristic properties, and extraction of corresponding features; (3) a 2-level learning framework to combine lowand high-level features of differing spatio-temporal scales. This new approach achieves significantly better tracking and recognition results than our previous methods

    Computer-based tracking, analysis, and visualization of linguistically significant nonmanual events in American Sign Language (ASL)

    Full text link
    Our linguistically annotated American Sign Language (ASL) corpora have formed a basis for research to automate detection by computer of essential linguistic information conveyed through facial expressions and head movements. We have tracked head position and facial deformations, and used computational learning to discern specific grammatical markings. Our ability to detect, identify, and temporally localize the occurrence of such markings in ASL videos has recently been improved by incorporation of (1) new techniques for deformable model-based 3D tracking of head position and facial expressions, which provide significantly better tracking accuracy and recover quickly from temporary loss of track due to occlusion; and (2) a computational learning approach incorporating 2-level Conditional Random Fields (CRFs), suited to the multi-scale spatio-temporal characteristics of the data, which analyses not only low-level appearance characteristics, but also the patterns that enable identification of significant gestural components, such as periodic head movements and raised or lowered eyebrows. Here we summarize our linguistically motivated computational approach and the results for detection and recognition of nonmanual grammatical markings; demonstrate our data visualizations, and discuss the relevance for linguistic research; and describe work underway to enable such visualizations to be produced over large corpora and shared publicly on the Web

    NEW shared & interconnected ASL resources: SignStream® 3 Software; DAI 2 for web access to linguistically annotated video corpora; and a sign bank

    Get PDF
    2017 marked the release of a new version of SignStream® software, designed to facilitate linguistic analysis of ASL video. SignStream® provides an intuitive interface for labeling and time-aligning manual and non-manual components of the signing. Version 3 has many new features. For example, it enables representation of morpho-phonological information, including display of handshapes. An expanding ASL video corpus, annotated through use of SignStream®, is shared publicly on the Web. This corpus (video plus annotations) is Web-accessible—browsable, searchable, and downloadable—thanks to a new, improved version of our Data Access Interface: DAI 2. DAI 2 also offers Web access to a brand new Sign Bank, containing about 10,000 examples of about 3,000 distinct signs, as produced by up to 9 different ASL signers. This Sign Bank is also directly accessible from within SignStream®, thereby boosting the efficiency and consistency of annotation; new items can also be added to the Sign Bank. Soon to be integrated into SignStream® 3 and DAI 2 are visualizations of computer-generated analyses of the video: graphical display of eyebrow height, eye aperture, an

    Evaluation of Manual and Non-manual Components for Sign Language Recognition

    Get PDF
    The motivation behind this work lies in the need to differentiate between similar signs that differ in non-manual components present in any sign. To this end, we recorded full sentences signed by five native signers and extracted 5200 isolated sign samples of twenty frequently used signs in Kazakh-Russian Sign Language (K-RSL), which have similar manual components but differ in non-manual components (i.e. facial expressions, eyebrow height, mouth, and head orientation). We conducted a series of evaluations in order to investigate whether non-manual components would improve sign’s recognition accuracy. Among standard machine learning approaches, Logistic Regression produced the best results, 78.2% of accuracy for dataset with 20 signs and 77.9% of accuracy for dataset with 2 classes (statement vs question). Dataset can be downloaded from the following website: https://krslproject.github.io/krsl20/publishedVersio

    K-RSL: a Corpus for Linguistic Understanding, Visual Evaluation, and Recognition of Sign Languages

    Get PDF
    The paper presents the first dataset that aims to serve interdisciplinary purposes for the utility of computer vision community and sign language linguistics. To date, a majority of Sign Language Recognition (SLR) approaches focus on recognising sign language as a manual gesture recognition problem. However, signers use other articulators: facial expressions, head and body position and movement to convey linguistic information. Given the important role of non-manual markers, this paper proposes a dataset and presents a use case to stress the importance of including non-manual features to improve the recognition accuracy of signs. To the best of our knowledge no prior publicly available dataset exists that explicitly focuses on non-manual components responsible for the grammar of sign languages. To this end, the proposed dataset contains 28250 videos of signs of high resolution and quality, with annotation of manual and nonmanual components. We conducted a series of evaluations in order to investigate whether non-manual components would improve signs’ recognition accuracy. We release the dataset to encourage SLR researchers and help advance current progress in this area toward realtime sign language interpretation. Our dataset will be made publicly available at https:// krslproject.github.io/krsl-corpuspublishedVersio

    RECOGNIZING LINGUISTIC NON-MANUAL SIGNS IN SIGN LANGUAGE

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Automatic segmentation of grammatical facial expressions in sign language: towards an inclusive communication experience

    Get PDF
    Nowadays, natural language processing techniques enable the development of applications that promote communication between humans and between humans and machines. Although the technology related to automated oral communication is mature and affordable, there are currently no appropriate solutions for visual-spatial languages. In the scarce efforts to automatically process sign languages, studies on non-manual gestures are rare, making it difficult to properly interpret the speeches uttered in those languages. In this paper, we present a solution for the automatic segmentation of grammatical facial expressions in sign language. This is a low-cost computational solution designed to integrate a sign language processing framework that supports the development of simple but high value-added applications for the context of universal communication. Moreover, we present a discussion of the difficulties faced by this solution to guide future research in this area

    Intelligent Sensors for Human Motion Analysis

    Get PDF
    The book, "Intelligent Sensors for Human Motion Analysis," contains 17 articles published in the Special Issue of the Sensors journal. These articles deal with many aspects related to the analysis of human movement. New techniques and methods for pose estimation, gait recognition, and fall detection have been proposed and verified. Some of them will trigger further research, and some may become the backbone of commercial systems

    Reconhecimento de expressões faciais na língua de sinais brasileira por meio do sistema de códigos de ação facial

    Get PDF
    Orientadores: Paula Dornhofer Paro Costa, Kate Mamhy Oliveira KumadaTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de ComputaçãoResumo: Surdos ao redor do mundo usam a língua de sinais para se comunicarem, porém, apesar da ampla disseminação dessas línguas, os surdos ou indivíduos com deficiência auditiva ainda enfrentam dificuldades na comunicação com ouvintes, na ausência de um intérprete. Tais dificuldades impactam negativamente o acesso dos surdos à educação, ao mercado de trabalho e aos serviços públicos em geral. As tecnologias assistivas, como o Reconhecimento Automático de Língua de Sinais, do inglês Automatic Sign Language Recognition (ASLR), visam superar esses obstáculos de comunicação. No entanto, o desenvolvimento de sistemas ASLR confiáveis apresenta vários desafios devido à complexidade linguística das línguas de sinais. As línguas de sinais (LSs) são sistemas linguísticos visuoespaciais que, como qualquer outra língua humana, apresentam variações linguísticas globais e regionais, além de um sistema gramatical. Além disso, as línguas de sinais não se baseiam apenas em gestos manuais, mas também em marcadores não-manuais, como expressões faciais. Nas línguas de sinais, as expressões faciais podem diferenciar itens lexicais, participar da construção sintática e contribuir para processos de intensificação, entre outras funções gramaticais e afetivas. Associado aos modelos de reconhecimento de gestos, o reconhecimento da expressões faciais é um componente essencial da tecnologia ASLR. Neste trabalho, propomos um sistema automático de reconhecimento de expressões faciais para Libras, a língua brasileira de sinais. A partir de uma pesquisa bibliográfica, apresentamos um estudo da linguagem e uma taxonomia diferente para expressões faciais de Libras associadas ao sistema de codificação de ações faciais. Além disso, um conjunto de dados de expressões faciais em Libras foi criado. Com base em experimentos, a decisão sobre a construção do nosso sistema foi através de pré-processamento e modelos de reconhecimento. Os recursos obtidos para a classificação das ações faciais são resultado da aplicação combinada de uma região de interesse, e informações geométricas da face dado embasamento teórico e a obtenção de desempenho melhor do que outras etapas testadas. Quanto aos classificadores, o SqueezeNet apresentou melhores taxas de precisão. Com isso, o potencial do modelo proposto vem da análise de 77% da acurácia média de reconhecimento das expressões faciais de Libras. Este trabalho contribui para o crescimento dos estudos que envolvem a visão computacional e os aspectos de reconhecimento da estrutura das expressões faciais da língua de sinais, e tem como foco principal a importância da anotação da ação facial de forma automatizadaAbstract: Deaf people around the world use sign languages to communicate but, despite the wide dissemination of such languages, deaf or hard of hearing individuals still face difficulties in communicating with hearing individuals, in the absence of an interpreter. Such difficulties negatively impact the access of deaf individuals to education, to the job market, and to public services in general. Assistive technologies, such as Automatic Sign Language Recognition (ASLR), aim at overcoming such communication obstacles. However, the development of reliable ASLR systems imposes numerous challenges due the linguistic complexity of sign languages. Sign languages (SLs) are visuospatial linguistic systems that, like any other human language, present global and regional linguistic variations, and a grammatical system. Also, sign languages do not rely only on manual gestures but also non-manual markers, such as facial expressions. In SL, facial expressions may differentiate lexical items, participate in syntactic construction, and contribute to change the intensity of a sentence, among other grammatical and affective functions. Associated with the gesture recognition models, facial expression recognition (FER) is an essential component of ASLR technology. In this work, we propose an automatic facial expression recognition (FER) system for Brazilian Sign Language (Libras). Derived from a literature survey, we present a language study and a different taxonomy for facial expressions of Libras associated with the Facial Action Coding System (FACS). Also, a dataset of facial expressions in Libras was created. An experimental setting was done for the construction of our framework for a preprocessing stage and recognizer model. The features for the classification of the facial actions resulted from the application of a combined region of interest and geometric information given a theoretical basis and better performance than other tested steps. As for classifiers, SqueezeNet returned better accuracy rates. With this, the potential of the proposed model comes from the analysis of 77% of the average accuracy of recognition of Libras' facial expressions. This work contributes to the growth of studies that involve the computational vision and recognition aspects of the structure of sign language facial expressions, and its main focus is the importance of facial action annotation in an automated wayDoutoradoEngenharia de ComputaçãoDoutora em Engenharia Elétrica001CAPE
    corecore