1,101 research outputs found

    Automated detection of brain abnormalities in neonatal hypoxia ischemic injury from MR images.

    Get PDF
    We compared the efficacy of three automated brain injury detection methods, namely symmetry-integrated region growing (SIRG), hierarchical region splitting (HRS) and modified watershed segmentation (MWS) in human and animal magnetic resonance imaging (MRI) datasets for the detection of hypoxic ischemic injuries (HIIs). Diffusion weighted imaging (DWI, 1.5T) data from neonatal arterial ischemic stroke (AIS) patients, as well as T2-weighted imaging (T2WI, 11.7T, 4.7T) at seven different time-points (1, 4, 7, 10, 17, 24 and 31 days post HII) in rat-pup model of hypoxic ischemic injury were used to assess the temporal efficacy of our computational approaches. Sensitivity, specificity, and similarity were used as performance metrics based on manual ('gold standard') injury detection to quantify comparisons. When compared to the manual gold standard, automated injury location results from SIRG performed the best in 62% of the data, while 29% for HRS and 9% for MWS. Injury severity detection revealed that SIRG performed the best in 67% cases while 33% for HRS. Prior information is required by HRS and MWS, but not by SIRG. However, SIRG is sensitive to parameter-tuning, while HRS and MWS are not. Among these methods, SIRG performs the best in detecting lesion volumes; HRS is the most robust, while MWS lags behind in both respects

    Enhancement Techniques and Methods for Brain MRI Imaging

    Get PDF
    In this paper, it is planned to review and compare the different methods of enhancing a DICOM of brain MRIused in preprocessing and segmentation techniques. Image segmentation is the process of partitioning an image into multiple segments, so as to change the representation of an image into something that is more meaningful and easier to analyze. Several general-purpose algorithms and techniques have been developed for image segmentation. This paper describes the different segmentation techniques used in the field of ultrasound, MR image and SAR Image Processing. In preprocessing and enhancement stage is used to eliminate the noise and high frequency components from DICOM image. In this paper, various Preprocessing and Enhancement Technique, Segmentation Algorithm and their compared

    Advanced Brain Tumour Segmentation from MRI Images

    Get PDF
    Magnetic resonance imaging (MRI) is widely used medical technology for diagnosis of various tissue abnormalities, detection of tumors. The active development in the computerized medical image segmentation has played a vital role in scientific research. This helps the doctors to take necessary treatment in an easy manner with fast decision making. Brain tumor segmentation is a hot point in the research field of Information technology with biomedical engineering. The brain tumor segmentation is motivated by assessing tumor growth, treatment responses, computer-based surgery, treatment of radiation therapy, and developing tumor growth models. Therefore, computer-aided diagnostic system is meaningful in medical treatments to reducing the workload of doctors and giving the accurate results. This chapter explains the causes, awareness of brain tumor segmentation and its classification, MRI scanning process and its operation, brain tumor classifications, and different segmentation methodologies

    Rapid Segmentation Techniques for Cardiac and Neuroimage Analysis

    Get PDF
    Recent technological advances in medical imaging have allowed for the quick acquisition of highly resolved data to aid in diagnosis and characterization of diseases or to guide interventions. In order to to be integrated into a clinical work flow, accurate and robust methods of analysis must be developed which manage this increase in data. Recent improvements in in- expensive commercially available graphics hardware and General-Purpose Programming on Graphics Processing Units (GPGPU) have allowed for many large scale data analysis problems to be addressed in meaningful time and will continue to as parallel computing technology improves. In this thesis we propose methods to tackle two clinically relevant image segmentation problems: a user-guided segmentation of myocardial scar from Late-Enhancement Magnetic Resonance Images (LE-MRI) and a multi-atlas segmentation pipeline to automatically segment and partition brain tissue from multi-channel MRI. Both methods are based on recent advances in computer vision, in particular max-flow optimization that aims at solving the segmentation problem in continuous space. This allows for (approximately) globally optimal solvers to be employed in multi-region segmentation problems, without the particular drawbacks of their discrete counterparts, graph cuts, which typically present with metrication artefacts. Max-flow solvers are generally able to produce robust results, but are known for being computationally expensive, especially with large datasets, such as volume images. Additionally, we propose two new deformable registration methods based on Gauss-Newton optimization and smooth the resulting deformation fields via total-variation regularization to guarantee the problem is mathematically well-posed. We compare the performance of these two methods against four highly ranked and well-known deformable registration methods on four publicly available databases and are able to demonstrate a highly accurate performance with low run times. The best performing variant is subsequently used in a multi-atlas segmentation pipeline for the segmentation of brain tissue and facilitates fast run times for this computationally expensive approach. All proposed methods are implemented using GPGPU for a substantial increase in computational performance and so facilitate deployment into clinical work flows. We evaluate all proposed algorithms in terms of run times, accuracy, repeatability and errors arising from user interactions and we demonstrate that these methods are able to outperform established methods. The presented approaches demonstrate high performance in comparison with established methods in terms of accuracy and repeatability while largely reducing run times due to the employment of GPU hardware

    A supervised clustering approach for fMRI-based inference of brain states

    Get PDF
    We propose a method that combines signals from many brain regions observed in functional Magnetic Resonance Imaging (fMRI) to predict the subject's behavior during a scanning session. Such predictions suffer from the huge number of brain regions sampled on the voxel grid of standard fMRI data sets: the curse of dimensionality. Dimensionality reduction is thus needed, but it is often performed using a univariate feature selection procedure, that handles neither the spatial structure of the images, nor the multivariate nature of the signal. By introducing a hierarchical clustering of the brain volume that incorporates connectivity constraints, we reduce the span of the possible spatial configurations to a single tree of nested regions tailored to the signal. We then prune the tree in a supervised setting, hence the name supervised clustering, in order to extract a parcellation (division of the volume) such that parcel-based signal averages best predict the target information. Dimensionality reduction is thus achieved by feature agglomeration, and the constructed features now provide a multi-scale representation of the signal. Comparisons with reference methods on both simulated and real data show that our approach yields higher prediction accuracy than standard voxel-based approaches. Moreover, the method infers an explicit weighting of the regions involved in the regression or classification task

    Multigrid Nonlocal Gaussian Mixture Model for Segmentation of Brain Tissues in Magnetic Resonance Images

    Get PDF
    corecore