21,830 research outputs found

    The role of the ventral intraparietal area (VIP/pVIP) in parsing optic flow into visual motion caused by self-motion and visual motion produced by object-motion

    Get PDF
    Retinal image motion is a composite signal that contains information about two behaviourally significant factors: self-motion and the movement of environmental objects. It is thought that the brain separates the two relevant signals, and although multiple brain regions have been identified that respond selectively to the composite optic flow signal, which brain region(s) perform the parsing process remains unknown. Here, we present original evidence that the putative human ventral intraparietal area (pVIP), a region known to receive optic flow signals as well as independent self-motion signals from other sensory modalities, plays a critical role in the parsing process and acts to isolate object-motion. We localised pVIP using its multisensory response profile, and then tested its relative responses to simulated object-motion and self-motion stimuli; results indicated that responses were much stronger in pVIP to stimuli that specified object-motion. We report two further observations that will be significant for the future direction of research in this area; firstly, activation in pVIP was suppressed by distant stationary objects compared to the absence of objects or closer objects. Secondly, we describe several other brain regions that share with pVIP selectivity for visual object-motion over visual self-motion as well as a multisensory response

    Neuronal bases of structural coherence in contemporary dance observation

    Get PDF
    The neuronal processes underlying dance observation have been the focus of an increasing number of brain imaging studies over the past decade. However, the existing literature mainly dealt with effects of motor and visual expertise, whereas the neural and cognitive mechanisms that underlie the interpretation of dance choreographies remained unexplored. Hence, much attention has been given to the Action Observation Network (AON) whereas the role of other potentially relevant neuro-cognitive mechanisms such as mentalizing (theory of mind) or language (narrative comprehension) in dance understanding is yet to be elucidated. We report the results of an fMRI study where the structural coherence of short contemporary dance choreographies was manipulated parametrically using the same taped movement material. Our participants were all trained dancers. The whole-brain analysis argues that the interpretation of structurally coherent dance phrases involves a subpart (Superior Parietal) of the AON as well as mentalizing regions in the dorsomedial Prefrontal Cortex. An ROI analysis based on a similar study using linguistic materials (Pallier et al. 2011) suggests that structural processing in language and dance might share certain neural mechanisms

    Interactions between visual and semantic processing during object recognition revealed by modulatory effects of age of acquisition

    Get PDF
    The age of acquisition (AoA) of objects and their names is a powerful determinant of processing speed in adulthood, with early-acquired objects being recognized and named faster than late-acquired objects. Previous research using fMRI (Ellis et al., 2006. Traces of vocabulary acquisition in the brain: evidence from covert object naming. NeuroImage 33, 958–968) found that AoA modulated the strength of BOLD responses in both occipital and left anterior temporal cortex during object naming. We used magnetoencephalography (MEG) to explore in more detail the nature of the influence of AoA on activity in those two regions. Covert object naming recruited a network within the left hemisphere that is familiar from previous research, including visual, left occipito-temporal, anterior temporal and inferior frontal regions. Region of interest (ROI) analyses found that occipital cortex generated a rapid evoked response (~ 75–200 ms at 0–40 Hz) that peaked at 95 ms but was not modulated by AoA. That response was followed by a complex of later occipital responses that extended from ~ 300 to 850 ms and were stronger to early- than late-acquired items from ~ 325 to 675 ms at 10–20 Hz in the induced rather than the evoked component. Left anterior temporal cortex showed an evoked response that occurred significantly later than the first occipital response (~ 100–400 ms at 0–10 Hz with a peak at 191 ms) and was stronger to early- than late-acquired items from ~ 100 to 300 ms at 2–12 Hz. A later anterior temporal response from ~ 550 to 1050 ms at 5–20 Hz was not modulated by AoA. The results indicate that the initial analysis of object forms in visual cortex is not influenced by AoA. A fastforward sweep of activation from occipital and left anterior temporal cortex then results in stronger activation of semantic representations for early- than late-acquired objects. Top-down re-activation of occipital cortex by semantic representations is then greater for early than late acquired objects resulting in delayed modulation of the visual response

    The neural basis of centre-surround interactions in visual motion processing

    Get PDF
    Perception of a moving visual stimulus can be suppressed or enhanced by surrounding context in adjacent parts of the visual field. We studied the neural processes underlying such contextual modulation with fMRI. We selected motion selective regions of interest (ROI) in the occipital and parietal lobes with sufficiently well defined topography to preclude direct activation by the surround. BOLD signal in the ROIs was suppressed when surround motion direction matched central stimulus direction, and increased when it was opposite. With the exception of hMT+/V5, inserting a gap between the stimulus and the surround abolished surround modulation. This dissociation between hMT+/V5 and other motion selective regions prompted us to ask whether motion perception is closely linked to processing in hMT+/V5, or reflects the net activity across all motion selective cortex. The motion aftereffect (MAE) provided a measure of motion perception, and the same stimulus configurations that were used in the fMRI experiments served as adapters. Using a linear model, we found that the MAE was predicted more accurately by the BOLD signal in hMT+/V5 than it was by the BOLD signal in other motion selective regions. However, a substantial improvement in prediction accuracy could be achieved by using the net activity across all motion selective cortex as a predictor, suggesting the overall conclusion that visual motion perception depends upon the integration of activity across different areas of visual cortex

    Linking pain and the body: neural correlates of visually induced analgesia

    Get PDF
    The visual context of seeing the body can reduce the experience of acute pain, producing a multisensory analgesia. Here we investigated the neural correlates of this “visually induced analgesia” using fMRI. We induced acute pain with an infrared laser while human participants looked either at their stimulated right hand or at another object. Behavioral results confirmed the expected analgesic effect of seeing the body, while fMRI results revealed an associated reduction of laser-induced activity in ipsilateral primary somatosensory cortex (SI) and contralateral operculoinsular cortex during the visual context of seeing the body. We further identified two known cortical networks activated by sensory stimulation: (1) a set of brain areas consistently activated by painful stimuli (the so-called “pain matrix”), and (2) an extensive set of posterior brain areas activated by the visual perception of the body (“visual body network”). Connectivity analyses via psychophysiological interactions revealed that the visual context of seeing the body increased effective connectivity (i.e., functional coupling) between posterior parietal nodes of the visual body network and the purported pain matrix. Increased connectivity with these posterior parietal nodes was seen for several pain-related regions, including somatosensory area SII, anterior and posterior insula, and anterior cingulate cortex. These findings suggest that visually induced analgesia does not involve an overall reduction of the cortical response elicited by laser stimulation, but is consequent to the interplay between the brain's pain network and a posterior network for body perception, resulting in modulation of the experience of pain

    Neural differentiation is moderated by age in scene- but not face-selective cortical regions

    Get PDF
    The aging brain is characterized by neural dedifferentiation, an apparent decrease in the functional selectivity of category-selective cortical regions. Age-related reductions in neural differentiation have been proposed to play a causal role in cognitive aging. Recent findings suggest, however, that age-related dedifferentiation is not equally evident for all stimulus categories and, additionally, that the relationship between neural differentiation and cognitive performance is not moderated by age. In light of these findings, in the present experiment, younger and older human adults (males and females) underwent fMRI as they studied words paired with images of scenes or faces before a subsequent memory task. Neural selectivity was measured in two scene-selective (parahippocampal place area (PPA) and retrosplenial cortex (RSC)] and two face-selective [fusiform face area (FFA) and occipital face area (OFA)] regions using both a univariate differentiation index and multivoxel pattern similarity analysis. Both methods provided highly convergent results, which revealed evidence of age-related reductions in neural dedifferentiation in scene-selective but not face-selective cortical regions. Additionally, neural differentiation in the PPA demonstrated a positive, age-invariant relationship with subsequent source memory performance (recall of the image category paired with each recognized test word). These findings extend prior findings suggesting that age-related neural dedifferentiation is not a ubiquitous phenomenon, and that the specificity of neural responses to scenes is predictive of subsequent memory performance independently of age

    Cortical feedback signals generalise across different spatial frequencies of feedforward inputs

    Get PDF
    Visual processing in cortex relies on feedback projections contextualising feedforward information flow. Primary visual cortex (V1) has small receptive fields and processes feedforward information at a fine-grained spatial scale, whereas higher visual areas have larger, spatially invariant receptive fields. Therefore, feedback could provide coarse information about the global scene structure or alternatively recover fine-grained structure by targeting small receptive fields in V1. We tested if feedback signals generalise across different spatial frequencies of feedforward inputs, or if they are tuned to the spatial scale of the visual scene. Using a partial occlusion paradigm, functional magnetic resonance imaging (fMRI) and multivoxel pattern analysis (MVPA) we investigated whether feedback to V1 contains coarse or fine-grained information by manipulating the spatial frequency of the scene surround outside an occluded image portion. We show that feedback transmits both coarse and fine-grained information as it carries information about both low (LSF) and high spatial frequencies (HSF). Further, feedback signals containing LSF information are similar to feedback signals containing HSF information, even without a large overlap in spatial frequency bands of the HSF and LSF scenes. Lastly, we found that feedback carries similar information about the spatial frequency band across different scenes. We conclude that cortical feedback signals contain information which generalises across different spatial frequencies of feedforward inputs
    • …
    corecore