168,834 research outputs found

    Statistical deconvolution of the free Fokker-Planck equation at fixed time

    Full text link
    We are interested in reconstructing the initial condition of a non-linear partial differential equation (PDE), namely the Fokker-Planck equation, from the observation of a Dyson Brownian motion at a given time t>0t>0. The Fokker-Planck equation describes the evolution of electrostatic repulsive particle systems, and can be seen as the large particle limit of correctly renormalized Dyson Brownian motions. The solution of the Fokker-Planck equation can be written as the free convolution of the initial condition and the semi-circular distribution. We propose a nonparametric estimator for the initial condition obtained by performing the free deconvolution via the subordination functions method. This statistical estimator is original as it involves the resolution of a fixed point equation, and a classical deconvolution by a Cauchy distribution. This is due to the fact that, in free probability, the analogue of the Fourier transform is the R-transform, related to the Cauchy transform. In past literature, there has been a focus on the estimation of the initial conditions of linear PDEs such as the heat equation, but to the best of our knowledge, this is the first time that the problem is tackled for a non-linear PDE. The convergence of the estimator is proved and the integrated mean square error is computed, providing rates of convergence similar to the ones known for non-parametric deconvolution methods. Finally, a simulation study illustrates the good performances of our estimator

    Probabilistic Motion Estimation Based on Temporal Coherence

    Full text link
    We develop a theory for the temporal integration of visual motion motivated by psychophysical experiments. The theory proposes that input data are temporally grouped and used to predict and estimate the motion flows in the image sequence. This temporal grouping can be considered a generalization of the data association techniques used by engineers to study motion sequences. Our temporal-grouping theory is expressed in terms of the Bayesian generalization of standard Kalman filtering. To implement the theory we derive a parallel network which shares some properties of cortical networks. Computer simulations of this network demonstrate that our theory qualitatively accounts for psychophysical experiments on motion occlusion and motion outliers.Comment: 40 pages, 7 figure

    Recent Progress in Image Deblurring

    Full text link
    This paper comprehensively reviews the recent development of image deblurring, including non-blind/blind, spatially invariant/variant deblurring techniques. Indeed, these techniques share the same objective of inferring a latent sharp image from one or several corresponding blurry images, while the blind deblurring techniques are also required to derive an accurate blur kernel. Considering the critical role of image restoration in modern imaging systems to provide high-quality images under complex environments such as motion, undesirable lighting conditions, and imperfect system components, image deblurring has attracted growing attention in recent years. From the viewpoint of how to handle the ill-posedness which is a crucial issue in deblurring tasks, existing methods can be grouped into five categories: Bayesian inference framework, variational methods, sparse representation-based methods, homography-based modeling, and region-based methods. In spite of achieving a certain level of development, image deblurring, especially the blind case, is limited in its success by complex application conditions which make the blur kernel hard to obtain and be spatially variant. We provide a holistic understanding and deep insight into image deblurring in this review. An analysis of the empirical evidence for representative methods, practical issues, as well as a discussion of promising future directions are also presented.Comment: 53 pages, 17 figure
    corecore