15,723 research outputs found

    PCA-RECT: An Energy-efficient Object Detection Approach for Event Cameras

    Full text link
    We present the first purely event-based, energy-efficient approach for object detection and categorization using an event camera. Compared to traditional frame-based cameras, choosing event cameras results in high temporal resolution (order of microseconds), low power consumption (few hundred mW) and wide dynamic range (120 dB) as attractive properties. However, event-based object recognition systems are far behind their frame-based counterparts in terms of accuracy. To this end, this paper presents an event-based feature extraction method devised by accumulating local activity across the image frame and then applying principal component analysis (PCA) to the normalized neighborhood region. Subsequently, we propose a backtracking-free k-d tree mechanism for efficient feature matching by taking advantage of the low-dimensionality of the feature representation. Additionally, the proposed k-d tree mechanism allows for feature selection to obtain a lower-dimensional dictionary representation when hardware resources are limited to implement dimensionality reduction. Consequently, the proposed system can be realized on a field-programmable gate array (FPGA) device leading to high performance over resource ratio. The proposed system is tested on real-world event-based datasets for object categorization, showing superior classification performance and relevance to state-of-the-art algorithms. Additionally, we verified the object detection method and real-time FPGA performance in lab settings under non-controlled illumination conditions with limited training data and ground truth annotations.Comment: Accepted in ACCV 2018 Workshops, to appea

    Sparse optical flow regularisation for real-time visual tracking

    Get PDF
    Optical flow can greatly improve the robustness of visual tracking algorithms. While dense optical flow algorithms have various applications, they can not be used for real-time solutions without resorting to GPU calculations. Furthermore, most optical flow algorithms fail in challenging lighting environments due to the violation of the brightness constraint. We propose a simple but effective iterative regularisation scheme for real-time, sparse optical flow algorithms, that is shown to be robust to sudden illumination changes and can handle large displacements. The algorithm proves to outperform well known techniques in real life video sequences, while being much faster to calculate. Our solution increases the robustness of a real-time particle filter based tracking application, consuming only a fraction of the available CPU power. Furthermore, a new and realistic optical flow dataset with annotated ground truth is created and made freely available for research purposes
    corecore