240 research outputs found

    Musical timbre: bridging perception with semantics

    Get PDF
    Musical timbre is a complex and multidimensional entity which provides information regarding the properties of a sound source (size, material, etc.). When it comes to music, however, timbre does not merely carry environmental information, but it also conveys aesthetic meaning. In this sense, semantic description of musical tones is used to express perceptual concepts related to artistic intention. Recent advances in sound processing and synthesis technology have enabled the production of unique timbral qualities which cannot be easily associated with a familiar musical instrument. Therefore, verbal description of these qualities facilitates communication between musicians, composers, producers, audio engineers etc. The development of a common semantic framework for musical timbre description could be exploited by intuitive sound synthesis and processing systems and could even influence the way in which music is being consumed. This work investigates the relationship between musical timbre perception and its semantics. A set of listening experiments in which participants from two different language groups (Greek and English) rated isolated musical tones on semantic scales has tested semantic universality of musical timbre. The results suggested that the salient semantic dimensions of timbre, namely: luminance, texture and mass, are indeed largely common between these two languages. The relationship between semantics and perception was further examined by comparing the previously identified semantic space with a perceptual timbre space (resulting from pairwise dissimilarity rating of the same stimuli). The two spaces featured a substantial amount of common variance suggesting that semantic description can largely capture timbre perception. Additionally, the acoustic correlates of the semantic and perceptual dimensions were investigated. This work concludes by introducing the concept of partial timbre through a listening experiment that demonstrates the influence of background white noise on the perception of musical tones. The results show that timbre is a relative percept which is influenced by the auditory environment

    Prediction of perceptual audio reproduction characteristics

    Get PDF

    Emotional expression through musical cues: A comparison of production and perception approaches

    Get PDF
    Multiple approaches have been used to investigate how musical cues are used to shape different emotions in music. The most prominent approach is a perception study, where musical stimuli varying in cue levels are assessed by participants in terms of their conveyed emotion. However, this approach limits the number of cues and combinations simultaneously investigated, since each variation produces another musical piece to be evaluated. Another less used approach is a production approach, where participants use cues to change the emotion conveyed in music, allowing participants to explore a larger number of cue combinations than the former approach. These approaches provide different levels of accuracy and economy for identifying how cues are used to convey different emotions in music. However, do these approaches provide converging results? This paper’s aims are two-fold. The role of seven musical cues (tempo, pitch, dynamics, brightness, articulation, mode, and instrumentation) in communicating seven emotions (sadness, joy, calmness, anger, fear, power, and surprise) in music is investigated. Additionally, this paper explores whether the two approaches will yield similar findings on how the cues are used to shape different emotions in music. The first experiment utilises a production approach where participants adjust the cues in real-time to convey target emotions. The second experiment uses a perception approach where participants rate pre-rendered systematic variations of the stimuli for all emotions. Overall, the cues operated similarly in the majority (32/49) of cue-emotion combinations across both experiments, with the most variance produced by the dynamics and instrumentation cues. A comparison of the prediction accuracy rates of cue combinations representing the intended emotions found that prediction rates in Experiment 1 were higher than the ones obtained in Experiment 2, suggesting that a production approach may be a more efficient method to explore how cues are used to shape different emotions in music

    Discriminating music performers by timbre: On the relation between instrumental gesture, tone quality and perception in classical cello performance

    Get PDF
    Classical music performers use instruments to transform the symbolic notationof the score into sound which is ultimately perceived by a listener. For acoustic instruments, the timbre of the resulting sound is assumed to be strongly linked to the physical and acoustical properties of the instrument itself. However, rather little is known about how much influence the player has over the timbre of the sound — is it possible to discriminate music performers by timbre? This thesis explores player-dependent aspects of timbre, serving as an individual means of musical expression. With a research scope narrowed to analysis of solo cello recordings, the differences in tone quality of six performers who played the same musical excerpts on the same cello are investigated from three different perspectives: perceptual, acoustical and gestural. In order to understand how the physical actions that a performer exerts on an instrument affect spectro-temporal features of the sound produced, which then can be perceived as the player’s unique tone quality, a series of experiments are conducted, starting with the creation of dedicated multi-modal cello recordings extended by performance gesture information (bowing control parameters). In the first study, selected tone samples of six cellists are perceptually evaluated across various musical contexts via timbre dissimilarity and verbal attribute ratings. The spectro-temporal analysis follows in the second experiment, with the aim to identify acoustic features which best describe varying timbral characteristics of the players. Finally, in the third study, individual combinationsof bowing controls are examined in search for bowing patterns which might characterise each cellist regardless of the music being performed. The results show that the different players can be discriminated perceptually, by timbre, and that this perceptual discrimination can be projected back through the acoustical and gestural domains. By extending current understanding of human-instrument dependencies for qualitative tone production, this research may have further applications in computer-aided musical training and performer-informed instrumental sound synthesis.This work was supported by a UK EPSRC DTA studentship EP/P505054/1 and the EPSRC funded OMRAS2 project EP/E017614/1

    Human response to vibration in residential environments (NANR209), Technical report 6 : determination of exposure-response relationships

    Get PDF
    This technical report presents the development of exposure-response relationships for the human response to vibration in residential environments. The data used to formulate the relationships presented in this report are those which were collected for the Defra funded project “NANR209: Human response to vibration in residential environments”, the main aim of which was the development of exposure-response relationships. Vibration caused by railway traffic, construction work, and internal sources outside of the residents’ control were considered. Response data was collected via face to face interviews with residents in their own homes. The questionnaire was presented as a neighbourhood satisfaction survey and gathered information on, among other things, annoyance caused by vibration and noise exposure. Development and implementation of the questionnaire used for the collection of response data is discussed in Technical Report 2 and Technical Report 5. Vibration exposure was determined via measurement and prediction in such a way that, where possible, an estimation of internal vibration exposure was established for each residence in which a questionnaire was completed. The measurement procedures and methods employed to estimate vibration exposure are detailed in Technical Report 1 and Technical Report 3. Estimations of noise exposure were also derived for each residence using the methods detailed in Technical Report 4

    Development and exploration of a timbre space representation of audio

    Get PDF
    Sound is an important part of the human experience and provides valuable information about the world around us. Auditory human-computer interfaces do not have the same richness of expression and variety as audio in the world, and it has been said that this is primarily due to a lack of reasonable design tools for audio interfaces.There are a number of good guidelines for audio design and a strong psychoacoustic understanding of how sounds are interpreted. There are also a number of sound manipulation techniques developed for computer music. This research takes these ideas as the basis for an audio interface design system. A proof-of-concept of this system has been developed in order to explore the design possibilities allowed by the new system.The core of this novel audio design system is the timbre space. This provides a multi-dimensional representation of a sound. Each sound is represented as a path in the timbre space and this path can be manipulated geometrically. Several timbre spaces are compared to determine which amongst them is the best one for audio interface design. The various transformations available in the timbre space are discussed and the perceptual relevance of two novel transformations are explored by encoding "urgency" as a design parameter.This research demonstrates that the timbre space is a viable option for audio interface design and provides novel features that are not found in current audio design systems. A number of problems with the approach and some suggested solutions are discussed. The timbre space opens up new possibilities for audio designers to explore combinations of sounds and sound design based on perceptual cues rather than synthesiser parameters

    ESCOM 2017 Proceedings

    Get PDF
    corecore