5,214 research outputs found

    Buffer allocation in stochastic flow lines via sample-based optimization with initial bounds

    Full text link
    The allocation of buffer space in flow lines with stochastic processing times is an important decision, as buffer capacities influence the performance of these lines. The objective of this problem is to minimize the overall number of buffer spaces achieving at least one given goal production rate. We optimally solve this problem with a mixed-integer programming approach by sampling the effective processing times. To obtain robust results, large sample sizes are required. These incur large models and long computation times using standard solvers. This paper presents a Benders Decomposition approach in combination with initial bounds and different feasibilitycutsfortheBufferAllocationProblem,whichprovidesexactsolutionswhile reducing the computation times substantially. Numerical experiments are carried out to demonstrate the performance and the flexibility of the proposed approaches. The numerical study reveals that the algorithm is capable to solve long lines with reliable and unreliable machines, including arbitrary distributions as well as correlations of processing times

    Performance Evaluation of Remanufacturing Systems

    Get PDF
    Implementation of new environmental legislation and public awareness has increased the responsibility on manufacturers. These responsibilities have forced manufacturers to begin remanufacturing and recycling of their goods after they are disposed or returned by customers. Ever since the introduction of remanufacturing, it has been applied in many industries and sectors. The remanufacturing process involves many uncertainties like time, quantity, and quality of returned products. Returned products are time sensitive products and their value drops with time. Thus, the returned products need to be remanufactured quickly to generate the maximum revenue. Every year millions of electronic products return to the manufacturer. However, only 10% to 20% of the returned products pass through the remanufacturing process, and the remaining products are disposed in the landfills. Uncertainties like failure rate of the servers, buffer capacity and inappropriate preventive maintenance policy would be highly responsible the delays in remanufacturing. In this thesis, a simulation based experimental methodology is used to determine the optimal preventive maintenance frequency and buffer allocation in a remanufacturing line, which will help to reduce the cycle time and increase the profit of the firm. Moreover, an estimated relationship between preventive maintenance frequency and MTBF (Mean Time Between Failure) is presented to determine the best preventive maintenance frequency for any industry. The solution approach is applied to a computer remanufacturing and a cell phone remanufacturing industry. Analysis of variance and regression analysis are performed to denote the influential factors in the remanufacturing line, and optimization is done by using the regression techniques and ANOVA results

    A polynomial time algorithm for solving a quality control station configuration problem

    Get PDF
    AbstractWe study unreliable serial production lines with known failure probabilities for each operation. Such a production line consists of a series of stations; existing machines and optional quality control stations (QCS). Our aim is to simultaneously decide where and if to install the QCSs along the line and to determine the production rate, so as to maximize the steady state expected net profit per time unit from the system.We use dynamic programming to solve the cost minimization auxiliary problem where the aim is to minimize the time unit production cost for a given production rate. Using the above developed O(N2) dynamic programming algorithm as a subroutine, where N stands for the number of machines in the line, we present an O(N4) algorithm to solve the Profit Maximization QCS Configuration Problem

    A novel algorithm for optimal buffer allocation in automated asynchronous unreliable lines

    Get PDF
    The Buffer Allocation Problem is a well-known optimization problem aiming at determining the optimal buffer sizes in a manufacturing system composed by various machines decoupled by buffers. This problem still has scientific relevance because of problem complexity and trade-off between conflicting goals. Moreover, it assumes industrial relevance in reconfigurable manufacturing lines, where buffer sizes can be easily adapted to the production scenario. This work proposes a novel algorithm integrating performance evaluation and optimization by means of throughput cuts based on a linear approximation. Numerical results show the validity of the proposed approach with respect to the traditional gradient-based method. Moreover, an industrial case study integrating the proposed approach into a decision-support system for the buffer allocation and reallocation is analyzed
    corecore