2,988 research outputs found

    Sequential Predictions based on Algorithmic Complexity

    Get PDF
    This paper studies sequence prediction based on the monotone Kolmogorov complexity Km=-log m, i.e. based on universal deterministic/one-part MDL. m is extremely close to Solomonoff's universal prior M, the latter being an excellent predictor in deterministic as well as probabilistic environments, where performance is measured in terms of convergence of posteriors or losses. Despite this closeness to M, it is difficult to assess the prediction quality of m, since little is known about the closeness of their posteriors, which are the important quantities for prediction. We show that for deterministic computable environments, the "posterior" and losses of m converge, but rapid convergence could only be shown on-sequence; the off-sequence convergence can be slow. In probabilistic environments, neither the posterior nor the losses converge, in general.Comment: 26 pages, LaTe

    Predictive Complexity for Games with Finite Outcome Spaces

    Get PDF
    Predictive complexity is a generalisation of Kolmogorov complexity motivated by an on-line prediction scenario. It quantifies “unpredictability ” of a sequence in a particular prediction environment. This paper surveys key results on predictive complexity for games with finitely many outcomes. The issues of existence, non-existence, uniqueness, and linear inequalities are covered.

    On Universal Prediction and Bayesian Confirmation

    Get PDF
    The Bayesian framework is a well-studied and successful framework for inductive reasoning, which includes hypothesis testing and confirmation, parameter estimation, sequence prediction, classification, and regression. But standard statistical guidelines for choosing the model class and prior are not always available or fail, in particular in complex situations. Solomonoff completed the Bayesian framework by providing a rigorous, unique, formal, and universal choice for the model class and the prior. We discuss in breadth how and in which sense universal (non-i.i.d.) sequence prediction solves various (philosophical) problems of traditional Bayesian sequence prediction. We show that Solomonoff's model possesses many desirable properties: Strong total and weak instantaneous bounds, and in contrast to most classical continuous prior densities has no zero p(oste)rior problem, i.e. can confirm universal hypotheses, is reparametrization and regrouping invariant, and avoids the old-evidence and updating problem. It even performs well (actually better) in non-computable environments.Comment: 24 page

    Causality - Complexity - Consistency: Can Space-Time Be Based on Logic and Computation?

    Full text link
    The difficulty of explaining non-local correlations in a fixed causal structure sheds new light on the old debate on whether space and time are to be seen as fundamental. Refraining from assuming space-time as given a priori has a number of consequences. First, the usual definitions of randomness depend on a causal structure and turn meaningless. So motivated, we propose an intrinsic, physically motivated measure for the randomness of a string of bits: its length minus its normalized work value, a quantity we closely relate to its Kolmogorov complexity (the length of the shortest program making a universal Turing machine output this string). We test this alternative concept of randomness for the example of non-local correlations, and we end up with a reasoning that leads to similar conclusions as in, but is conceptually more direct than, the probabilistic view since only the outcomes of measurements that can actually all be carried out together are put into relation to each other. In the same context-free spirit, we connect the logical reversibility of an evolution to the second law of thermodynamics and the arrow of time. Refining this, we end up with a speculation on the emergence of a space-time structure on bit strings in terms of data-compressibility relations. Finally, we show that logical consistency, by which we replace the abandoned causality, it strictly weaker a constraint than the latter in the multi-party case.Comment: 17 pages, 16 figures, small correction

    MDL Convergence Speed for Bernoulli Sequences

    Get PDF
    The Minimum Description Length principle for online sequence estimation/prediction in a proper learning setup is studied. If the underlying model class is discrete, then the total expected square loss is a particularly interesting performance measure: (a) this quantity is finitely bounded, implying convergence with probability one, and (b) it additionally specifies the convergence speed. For MDL, in general one can only have loss bounds which are finite but exponentially larger than those for Bayes mixtures. We show that this is even the case if the model class contains only Bernoulli distributions. We derive a new upper bound on the prediction error for countable Bernoulli classes. This implies a small bound (comparable to the one for Bayes mixtures) for certain important model classes. We discuss the application to Machine Learning tasks such as classification and hypothesis testing, and generalization to countable classes of i.i.d. models.Comment: 28 page

    Towards Machine Wald

    Get PDF
    The past century has seen a steady increase in the need of estimating and predicting complex systems and making (possibly critical) decisions with limited information. Although computers have made possible the numerical evaluation of sophisticated statistical models, these models are still designed \emph{by humans} because there is currently no known recipe or algorithm for dividing the design of a statistical model into a sequence of arithmetic operations. Indeed enabling computers to \emph{think} as \emph{humans} have the ability to do when faced with uncertainty is challenging in several major ways: (1) Finding optimal statistical models remains to be formulated as a well posed problem when information on the system of interest is incomplete and comes in the form of a complex combination of sample data, partial knowledge of constitutive relations and a limited description of the distribution of input random variables. (2) The space of admissible scenarios along with the space of relevant information, assumptions, and/or beliefs, tend to be infinite dimensional, whereas calculus on a computer is necessarily discrete and finite. With this purpose, this paper explores the foundations of a rigorous framework for the scientific computation of optimal statistical estimators/models and reviews their connections with Decision Theory, Machine Learning, Bayesian Inference, Stochastic Optimization, Robust Optimization, Optimal Uncertainty Quantification and Information Based Complexity.Comment: 37 page

    Shannon Information and Kolmogorov Complexity

    Full text link
    We compare the elementary theories of Shannon information and Kolmogorov complexity, the extent to which they have a common purpose, and where they are fundamentally different. We discuss and relate the basic notions of both theories: Shannon entropy versus Kolmogorov complexity, the relation of both to universal coding, Shannon mutual information versus Kolmogorov (`algorithmic') mutual information, probabilistic sufficient statistic versus algorithmic sufficient statistic (related to lossy compression in the Shannon theory versus meaningful information in the Kolmogorov theory), and rate distortion theory versus Kolmogorov's structure function. Part of the material has appeared in print before, scattered through various publications, but this is the first comprehensive systematic comparison. The last mentioned relations are new.Comment: Survey, LaTeX 54 pages, 3 figures, Submitted to IEEE Trans Information Theor
    corecore