284 research outputs found

    An Efficient Dorsal Hand Vein Recognition Based on Firefly Algorithm

    Get PDF
    Biometric technology is an efficient personal authentication andidentification technique. As one of the main-stream branches, dorsal handvein recognition has been recently attracted the attention of researchers. It is more preferable than the other types of biometrics becuse it’s impossible to steal or counterfeit the patterns and the pattern of the vessels of back of the hand is fixed and unique with repeatable biometric features. Also, the recent researches have been obtained no certain recognition rate yet becuse of the noises in the imaging patterns, and impossibility of Dimension reducing because of the non-complexity of the models, and proof of correctness of identification is required. Therefore, in this paper, first, the images of blood vessels on back of the hands of people is analysed, and after pre-processing of images and feature extraction (in the intersection between the vessels) we began to identify people using firefly clustering algorithms. This identification is done based on the distance patterns between crossing vessels and their matching place. The identification will be done based on the classification of each part of NCUT data set and it consisting of 2040 dorsal hand vein images. High speed in patterns recognition and less computation are the advantages of this method. The recognition rate of this method ismore accurate and the error is less than one percent. At the end thecorrectness percentage of this method (CLU-D-F-A) for identification iscompared with other various algorithms, and the superiority of the proposed method is proved.DOI:http://dx.doi.org/10.11591/ijece.v3i1.176

    Modelling on-demand preprocessing framework towards practical approach in clinical analysis of diabetic retinopathy

    Get PDF
    Diabetic retinopathy (DR) refers to a complication of diabetes and a prime cause of vision loss in middle-aged people. A timely screening and diagnosis process can reduce the risk of blindness. Fundus imaging is mainly preferred in the clinical analysis of DR. However; the raw fundus images are usually subjected to artifacts, noise, low and varied contrast, which is very hard to process by human visual systems and automated systems. In the existing literature, many solutions are given to enhance the fundus image. However, such approaches are particular and limited to a specific objective that cannot address multiple fundus images. This paper has presented an on-demand preprocessing frame work that integrates different techniques to address geometrical issues, random noises, and comprehensive contrast enhancement solutions. The performance of each preprocessing process is evaluated against peak signal-to-noise ratio (PSNR), and brightness is quantified in the enhanced image. The motive of this paper is to offer a flexible approach of preprocessing mechanism that can meet image enhancement needs based on different preprocessing requirements to improve the quality of fundus imaging towards early-stage diabetic retinopathy identification

    Segmentation of images by color features: a survey

    Get PDF
    En este articulo se hace la revisión del estado del arte sobre la segmentación de imagenes de colorImage segmentation is an important stage for object recognition. Many methods have been proposed in the last few years for grayscale and color images. In this paper, we present a deep review of the state of the art on color image segmentation methods; through this paper, we explain the techniques based on edge detection, thresholding, histogram-thresholding, region, feature clustering and neural networks. Because color spaces play a key role in the methods reviewed, we also explain in detail the most commonly color spaces to represent and process colors. In addition, we present some important applications that use the methods of image segmentation reviewed. Finally, a set of metrics frequently used to evaluate quantitatively the segmented images is shown

    Comparative Analysis of MFO, GWO and GSO for Classification of Covid-19 Chest X-Ray Images

    Get PDF
    تلعب الصور الطبية دورًا حاسمًا في تصنيف الأمراض والحالات المختلفة. إحدى طرق التصوير هي الأشعة السينية التي توفر معلومات بصرية قيمة تساعد في تحديد وتوصيف مختلف الحالات الطبية. لطالما استخدمت الصور الشعاعية للصدر (CXR) لفحص ومراقبة العديد من اضطرابات الرئة، مثل السل والالتهاب الرئوي وانخماص الرئة والفتق. يمكن الكشف عن COVID-19 باستخدام صور CXR أيضًا. تم اكتشاف COVID-19، وهو فيروس يسبب التهابات في الرئتين والممرات الهوائية في الجهاز التنفسي العلوي، لأول مرة في عام 2019 في مقاطعة ووهان بالصين، ومنذ ذلك الحين يُعتقد أنه يتسبب في تلف كبير في مجرى الهواء، مما يؤثر بشدة على رئة الأشخاص المصابين. انتشر الفيروس بسرعة في جميع أنحاء العالم، وتم تسجيل الكثير من الوفيات والحالات المتزايدة بشكل يومي. يمكن استخدام CXR لمراقبة آثار COVID-19 على أنسجة الرئة. تبحث هذه الدراسة في تحليل مقارنة لأقرب جيران k (KNN)، و Extreme Gradient Boosting (XGboost)، و Support-Vector Machine (SVM)، وهي بعض مناهج التصنيف لاختيار الميزات في هذا المجال باستخدام خوارزمية Moth-Flame Optimization (MFO)، وخوارزمية Gray Wolf Optimizer (GWO)، وخوارزمية Glowworm Swarm Optimization (GSO). في هذه الدراسة، استخدم الباحثون مجموعة بيانات تتكون من مجموعتين على النحو التالي: 9544 صورة بالأشعة السينية ثنائية الأبعاد، والتي تم تصنيفها إلى مجموعتين باستخدام اختبارات التحقق من صحتها: 5500 صورة لرئتين سليمتين و4044 صورة للرئتين مع COVID-19. تتضمن المجموعة الثانية 800 صورة و400 صورة لرئتين سليمتين و400 رئة مصابة بـ COVID-19. تم تغيير حجم كل صورة إلى 200 × 200 بكسل. كانت الدقة والاستدعاء ودرجة F1 من بين معايير التقييم الكمي المستخدمة في هذه الدراسة.Medical images play a crucial role in the classification of various diseases and conditions. One of the imaging modalities is X-rays which provide valuable visual information that helps in the identification and characterization of various medical conditions. Chest radiograph (CXR) images have long been used to examine and monitor numerous lung disorders, such as tuberculosis, pneumonia, atelectasis, and hernia. COVID-19 detection can be accomplished using CXR images as well. COVID-19, a virus that causes infections in the lungs and the airways of the upper respiratory tract, was first discovered in 2019 in Wuhan Province, China, and has since been thought to cause substantial airway damage, badly impacting the lungs of affected persons. The virus was swiftly gone viral around the world and a lot of fatalities and cases growing were recorded on a daily basis. CXR can be used to monitor the effects of COVID-19 on lung tissue. This study examines a comparison analysis of k-nearest neighbors (KNN), Extreme Gradient Boosting (XGboost), and Support-Vector Machine (SVM) are some classification approaches for feature selection in this domain using The Moth-Flame Optimization algorithm (MFO), The Grey Wolf Optimizer algorithm (GWO), and The Glowworm Swarm Optimization algorithm (GSO). For this study, researchers employed a data set consisting of two sets as follows: 9,544 2D X-ray images, which were classified into two sets utilizing validated tests: 5,500 images of healthy lungs and 4,044 images of lungs with COVID-19. The second set includes 800 images, 400 of healthy lungs and 400 of lungs affected with COVID-19. Each image has been resized to 200x200 pixels. Precision, recall, and the F1-score were among the quantitative evaluation criteria used in this study

    Image Restoration Based on Hybrid Ant Colony Algorithm

    Get PDF
    Image restoration is the process to eliminate or reduce the image quality degradation in the digital image formation, transmission and recording and its purpose is to process the observed degraded image to make the restored result approximate the un-degraded original image. This paper, based on the basic ant colony algorithm and integrating with the genetic algorithm, proposes an image restoration processing method based on hybrid ant colony algorithm. This method transforms the optimal population information of genetic algorithm into the original pheromone concentration matrix of ant colony algorithm and uses it to compute the parameters of degradation function so as to get a precise estimate of the original image. By analyzing and comparing the restoration results, the method of this paper can not only overcome the influence of noises, but it can also make the image smoother with no fringe effects in the edges and excellent visual effects, verifying its practicability

    An Image Processing Framework for Breast Cancer Detection Using Multi-View Mammographic Images

    Get PDF
    Breast cancer is the leading cause of cancer death in women. The early phase of breast cancer is asymptomatic, without any signs or symptoms. The earlier breast cancer can be detected, the greater chance of cure. Early detection using screening mammography is a common step for detecting the presence of breast cancer. Many studies of computer-based using breast cancer detection have been done previously. However, the detection process for craniocaudal (CC) view and mediolateral oblique (MLO) view angles were done separately. This study aims to improve the detection performance for breast cancer diagnosis with CC and MLO view analysis. An image processing framework for multi-view screening was used to improve the diagnostic results rather than single-view. Image enhancement, segmentation, and feature extraction are all part of the framework provided in this study. The stages of image quality improvement are very important because the contrast of mammographic images is relatively low, so it often overlaps between cancer tissue and normal tissue. Texture-based segmentation utilizing the first-order local entropy approach was used to segment the images. The value of the radius and the region of probable cancer were calculated using the findings of feature extraction. The results of this study show the accuracy of breast cancer detection using CC and MLO views were 88.0% and 80.5% respectively. The proposed framework was useful in the diagnosis of breast cancer, that the detection results and features help clinicians in making treatment

    Reversible Image Watermarking Using Modified Quadratic Difference Expansion and Hybrid Optimization Technique

    Get PDF
    With increasing copyright violation cases, watermarking of digital images is a very popular solution for securing online media content. Since some sensitive applications require image recovery after watermark extraction, reversible watermarking is widely preferred. This article introduces a Modified Quadratic Difference Expansion (MQDE) and fractal encryption-based reversible watermarking for securing the copyrights of images. First, fractal encryption is applied to watermarks using Tromino's L-shaped theorem to improve security. In addition, Cuckoo Search-Grey Wolf Optimization (CSGWO) is enforced on the cover image to optimize block allocation for inserting an encrypted watermark such that it greatly increases its invisibility. While the developed MQDE technique helps to improve coverage and visual quality, the novel data-driven distortion control unit ensures optimal performance. The suggested approach provides the highest level of protection when retrieving the secret image and original cover image without losing the essential information, apart from improving transparency and capacity without much tradeoff. The simulation results of this approach are superior to existing methods in terms of embedding capacity. With an average PSNR of 67 dB, the method shows good imperceptibility in comparison to other schemes
    corecore