1,177 research outputs found

    Non-linear Causal Inference using Gaussianity Measures

    Full text link
    We provide theoretical and empirical evidence for a type of asymmetry between causes and effects that is present when these are related via linear models contaminated with additive non-Gaussian noise. Assuming that the causes and the effects have the same distribution, we show that the distribution of the residuals of a linear fit in the anti-causal direction is closer to a Gaussian than the distribution of the residuals in the causal direction. This Gaussianization effect is characterized by reduction of the magnitude of the high-order cumulants and by an increment of the differential entropy of the residuals. The problem of non-linear causal inference is addressed by performing an embedding in an expanded feature space, in which the relation between causes and effects can be assumed to be linear. The effectiveness of a method to discriminate between causes and effects based on this type of asymmetry is illustrated in a variety of experiments using different measures of Gaussianity. The proposed method is shown to be competitive with state-of-the-art techniques for causal inference.Comment: 35 pages, 9 figure

    Finding Exogenous Variables in Data with Many More Variables than Observations

    Full text link
    Many statistical methods have been proposed to estimate causal models in classical situations with fewer variables than observations (p<n, p: the number of variables and n: the number of observations). However, modern datasets including gene expression data need high-dimensional causal modeling in challenging situations with orders of magnitude more variables than observations (p>>n). In this paper, we propose a method to find exogenous variables in a linear non-Gaussian causal model, which requires much smaller sample sizes than conventional methods and works even when p>>n. The key idea is to identify which variables are exogenous based on non-Gaussianity instead of estimating the entire structure of the model. Exogenous variables work as triggers that activate a causal chain in the model, and their identification leads to more efficient experimental designs and better understanding of the causal mechanism. We present experiments with artificial data and real-world gene expression data to evaluate the method.Comment: A revised version of this was published in Proc. ICANN201

    Estimating the effect of joint interventions from observational data in sparse high-dimensional settings

    Full text link
    We consider the estimation of joint causal effects from observational data. In particular, we propose new methods to estimate the effect of multiple simultaneous interventions (e.g., multiple gene knockouts), under the assumption that the observational data come from an unknown linear structural equation model with independent errors. We derive asymptotic variances of our estimators when the underlying causal structure is partly known, as well as high-dimensional consistency when the causal structure is fully unknown and the joint distribution is multivariate Gaussian. We also propose a generalization of our methodology to the class of nonparanormal distributions. We evaluate the estimators in simulation studies and also illustrate them on data from the DREAM4 challenge.Comment: 30 pages, 3 figures, 45 pages supplemen
    corecore