6,042 research outputs found

    Hemodynamic Measurement Using Four-Dimensional Phase-Contrast MRI: Quantification of Hemodynamic Parameters and Clinical Applications

    Get PDF
    Recent improvements have been made to the use of time-resolved, three-dimensional phase-contrast (PC) magnetic resonance imaging (MRI), which is also named four-dimensional (4D) PC-MRI or 4D flow MRI, in the investigation of spatial and temporal variations in hemodynamic features in cardiovascular blood flow. The present article reviews the principle and analytical procedures of 4D PC-MRI. Various fluid dynamic biomarkers for possible clinical usage are also described, including wall shear stress, turbulent kinetic energy, and relative pressure. Lastly, this article provides an overview of the clinical applications of 4D PC-MRI in various cardiovascular regions.113Ysciescopuskc

    On the numerical treatment of viscous and convective effects in relative pressure reconstruction methods

    Get PDF
    The mechanism of many cardiovascular diseases can be understood by studying the pressure distribution in blood vessels. Direct pressure measurements, however, require invasive probing and provide only single‐point data. Alternatively, relative pressure fields can be reconstructed from imaging‐based velocity measurements by considering viscous and inertial forces. Both contributions can be potential troublemakers in pressure reconstruction: the former due to its higher‐order derivatives, and the latter because of the quadratic nonlinearity in the convective acceleration. Viscous and convective terms can be treated in various forms, which, although equivalent for ideal measurements, can perform differently in practice. In fact, multiple versions are often used in literature, with no apparent consensus on the more suitable variants. In this context, the present work investigates the performance of different versions of relative pressure estimators. For viscous effects, in particular, two new modified estimators are presented to circumvent second‐order differentiation without requiring surface integrals. In‐silico and in‐vitro data in the typical regime of cerebrovascular flows are considered, allowing a systematic noise sensitivity study. Convective terms are shown to be the main source of error, even for flows with pronounced viscous component. Moreover, the conservation (often integrated) form of convection exhibits higher noise sensitivity than the standard convective description, in all three families of estimators considered here. For the classical pressure Poisson estimator, the present modified version of the viscous term tends to yield better accuracy than the (recently introduced) integrated form, although this effect is in most cases negligible when compared to convection‐related errors

    Magnetic Resonance Imaging of the Neonatal Cardiovascular System : Impact of Patent Ductus Arteriosus

    Get PDF
    The incidence of premature birth is increasing in absolute number and as a proportion of all births around the world. Many pathologies seen in this cohort are related to abnormal blood supply. Fetal and premature cardiovascular systems differ greatly as to maintain adequate blood flow to the developing organs in the uterine and extra-uterine environments require very different circulations. Subsequently following preterm birth the immature cardiovascular system undergoes abrupt adaptations, often resulting in the prolonged patency of the fetal shunt, ductus arteriosus. The impact of a patent ductus arteriosus (PDA) is poorly understood. However it is thought that large ductal shunt volumes may result in congestive cardiac failure and systemic hypo-­‐perfusion. Cardiac MRI has contributed greatly to the understanding of many cardiovascular diseases and congenital defects in paediatric and adult patients. Translating these imaging techniques to assess the preterm cardiovascular system requires careful optimization due to their condition, size and significantly increased heart rate. The work presented in this thesis employs multiple functional CMR techniques to investigate the preterm cardiovascular system in the presence and absence of PDA and the resultant cardiac function. A novel technique utilizing PC MRI to quantify PDA shunt volume and its impact on flow distribution is presented. Despite large shunt volumes, systemic circulation remained within normal range, although slight reduction is detectable when assessed at group level. Subsequently the impact of PDA and associated increased work load on left ventricular dimensions and function was then investigated using SSFP imaging. Results indicated that cardiac function was maintained even in the presence of large shunt volumes. Finally 4D PC sequences were employed to evaluate pulse wave velocity and flow regime within the preterm aorta, demonstrating the feasibility of hemodynamic assessment in this cohort. The findings of these studies provide insight into the impact of PDA. The reliable measurement and assessment of preterm cardiovascular system provides the potential to improve the understanding of the development and effects of certain pathologies seen in this cohort.Open Acces

    Validation of 4D Flow based relative pressure maps in aortic flows

    Get PDF
    While the clinical gold standard for pressure difference measurements is invasive catheterization, 4D Flow MRI is a promising tool for enabling a non-invasive quantification, by linking highly spatially resolved velocity measurements with pressure differences via the incompressible Navier–Stokes equations. In this work we provide a validation and comparison with phantom and clinical patient data of pressure difference maps estimators. We compare the classical Pressure Poisson Estimator (PPE) and the new Stokes Estimator (STE) against catheter pressure measurements under a variety of stenosis severities and flow intensities. Specifically, we use several 4D Flow data sets of realistic aortic phantoms with different anatomic and hemodynamic severities and two patients with aortic coarctation. The phantom data sets are enriched by subsampling to lower resolutions, modification of the segmentation and addition of synthetic noise, in order to study the sensitivity of the pressure difference estimators to these factors. Overall, the STE method yields more accurate results than the PPE method compared to catheterization data. The superiority of the STE becomes more evident at increasing Reynolds numbers with a better capacity of capturing pressure gradients in strongly convective flow regimes. The results indicate an improved robustness of the STE method with respect to variation in lumen segmentation. However, with heuristic removal of the wall-voxels, the PPE can reach a comparable accuracy for lower Reynolds’ numbers

    Enhancing magnetic resonance imaging with computational fluid dynamics

    Get PDF
    Quantitative assessment of haemodynamics has been utilised for better understanding of cardiac function and assisting diagnostics of cardiovascular diseases. To study haemodynamics, magnetic resonance imaging (MRI) and computational fluid dynamics (CFD) are widely used because of their non-invasive nature. It has been demonstrated that the two approaches are complementary to each other with their own advantages and limitations. Four dimensional cardiovascular magnetic resonance (4D Flow CMR) imaging enables direct measurement of blood flow velocity in vivo while spatial and temporal resolutions as well as region of image acquisition are limited to achieve a detailed assessment of the haemodynamics. CFD, on the other hand, is a powerful tool that has the potential to expand the image-obtained velocity fields with some problem-specific assumptions such as rigid arterial walls. We suggest a novel approach in which 4D Flow CMR and CFD are integrated synergistically in order to obtain an enhanced 4D Flow CMRI (EMRI). The enhancement will consist in overcoming the spatial-resolution limitations of the original 4D Flow CMRI, which will enable more accurate quantification of flow dependent bio-mechanical quantities (e.g. endothelial shear stress) as well as non-invasive estimation of blood pressure. At the same time, it will reduce a number of assumptions in conventional haemodynamic CFD such as in/outflow conditions including the effect of valves, the impact of patient-specific vessel wall motion and the effect of the surrounding tissues. The approach was first tested on a 2D portion of a pipe, to understand the behaviour of the parameters of the model in this novel framework. Afterwards the methodology was tested on patient specific data, to apply it to the analysis of blood flow in a patient specific human aorta, in 2D. The outcomes of EMRI are assessed by comparing the computed velocities with the 4D Flow CMR one. A fundamental step to allow the translation to clinics of this methodology was the validation. The study was performed on an idealised-simplified model of the human aortic arch – a U bend – with a sinusoidal inflow applied by a pump. Firstly, phase resolved particle image velocimetry (PIV) (an experimental technique enables high spatial-temporal resolution) was performed in 5 different time points of the pump cycle, using a blood alike fluid with the same refractive index matched of the clear silicon phantom, and seeded with silver coated hollow glass spheres. Real time 4D Flow CMR was then performed on the phantom with MRI. Lastly using the pump flow rate and the phantom geometry, a computation of the flow through the U bend was conducted using Ansys CFX. The flow patterns obtained from the 3 methods were compared in the middle plane of the phantom. The methodology was then applied to study a patient specific aorta in 3D, and retrieve flow patterns and flow dependent parameters. Finally, the validated methodology was applied to study atherogenesis, and in particular to investigate the relation between EMRI retrieved flow quantities (e.g. wall shear stress (WSS)) and temperature heterogeneity. A carotid artery phantom was realised and studied with CFD, MRT and EMRI. All the results demonstrate that EMRI preserves flow structures while correcting for experimental noise. Therefore it can provide better insights of the haemodynamics of cardiovascular problems, overcoming the limitations of 4D Flow CMR and CFD, even when considering a small region of interest. These findings were supported by the validation experiment that showed how EMRI retrieved flow patterns were much more consistent with the one measured with high resolution PIV, compensating for 4D Flow CMR errors. These findings lead to the application to the atherogenesis problem, allowing higher resolution flow patterns, more suitable to be compared to the temperature distribution and highlighted how flow patterns exert an influence on the temperature distribution on the vessel wall. EMRI confirmed its potential to provide more accurate non-invasive estimation of flow derived and flow dependent quantities and become a novel diagnostic tool

    A Proof of Concept of a Non-Invasive Image-Based Material Characterization Method for Enhanced Patient-Specific Computational Modeling

    Get PDF
    PURPOSE: Computational models of cardiovascular structures rely on their accurate mechanical characterization. A validated method able to infer the material properties of patient-specific large vessels is currently lacking. The aim of the present study is to present a technique starting from the flow-area (QA) method to retrieve basic material properties from magnetic resonance (MR) imaging. METHODS: The proposed method was developed and tested, first, in silico and then in vitro. In silico, fluid-structure interaction (FSI) simulations of flow within a deformable pipe were run with varying elastic modules (E) between 0.5 and 32 MPa. The proposed QA-based formulation was assessed and modified based on the FSI results to retrieve E values. In vitro, a compliant phantom connected to a mock circulatory system was tested within MR scanning. Images of the phantom were acquired and post-processed according to the modified formulation to infer E of the phantom. Results of in vitro imaging assessment were verified against standard tensile test. RESULTS: In silico results from FSI simulations were used to derive the correction factor to the original formulation based on the geometrical and material characteristics. In vitro, the modified QA-based equation estimated an average E = 0.51 MPa, 2% different from the E derived from tensile tests (i.e. E = 0.50 MPa). CONCLUSION: This study presented promising results of an indirect and non-invasive method to establish elastic properties from solely MR images data, suggesting a potential image-based mechanical characterization of large blood vessels

    Computational fluid dynamics simulations of blood flow regularized by 3D phase contrast MRI

    Get PDF
    Abstract Background Phase contrast magnetic resonance imaging (PC-MRI) is used clinically for quantitative assessment of cardiovascular flow and function, as it is capable of providing directly-measured 3D velocity maps. Alternatively, vascular flow can be estimated from model-based computation fluid dynamics (CFD) calculations. CFD provides arbitrarily high resolution, but its accuracy hinges on model assumptions, while velocity fields measured with PC-MRI generally do not satisfy the equations of fluid dynamics, provide limited resolution, and suffer from partial volume effects. The purpose of this study is to develop a proof-of-concept numerical procedure for constructing a simulated flow field that is influenced by both direct PC-MRI measurements and a fluid physics model, thereby taking advantage of both the accuracy of PC-MRI and the high spatial resolution of CFD. The use of the proposed approach in regularizing 3D flow fields is evaluated. Methods The proposed algorithm incorporates both a Newtonian fluid physics model and a linear PC-MRI signal model. The model equations are solved numerically using a modified CFD algorithm. The numerical solution corresponds to the optimal solution of a generalized Tikhonov regularization, which provides a flow field that satisfies the flow physics equations, while being close enough to the measured PC-MRI velocity profile. The feasibility of the proposed approach is demonstrated on data from the carotid bifurcation of one healthy volunteer, and also from a pulsatile carotid flow phantom. Results The proposed solver produces flow fields that are in better agreement with direct PC-MRI measurements than CFD alone, and converges faster, while closely satisfying the fluid dynamics equations. For the implementation that provided the best results, the signal-to-error ratio (with respect to the PC-MRI measurements) in the phantom experiment was 6.56 dB higher than that of conventional CFD; in the in vivo experiment, it was 2.15 dB higher. Conclusions The proposed approach allows partial or complete measurements to be incorporated into a modified CFD solver, for improving the accuracy of the resulting flow fields estimates. This can be used for reducing scan time, increasing the spatial resolution, and/or denoising the PC-MRI measurements.http://deepblue.lib.umich.edu/bitstream/2027.42/116061/1/12938_2015_Article_104.pd

    Heart applications of 4D flow

    Get PDF
    Four-dimensional (4D) flow sequences are an innovative type of MR sequences based upon phase contrast (PC) sequences which are a type of application of Angio-MRI together with the Time of Flight (TOF) sequences and Contrast-Enhanced Magnetic Resonance Acquisition (CE-MRA). They share the basic principles of PC, but unlike PC sequences, 4D flow has velocity encoding along all three flow directions and three-dimensional (3D) anatomic coverage. They guarantee the analysis of flow with multiplanarity on a post-processing level, which is a unique feature among MR sequences. Furthermore, this technique provides a completely new level to the in vivo flow analysis as it allows measurements in never studied districts such as intracranial applications or some parts of the heart never studied with echo-color-doppler, which is its sonographic equivalent. Furthermore, this technique provides a completely new level to the in vivo flow analysis as it allows accurate measurement of the flows in different districts (e.g., intracranial, cardiac) that are usually studied with echo-color-doppler, which is its sonographic equivalent. Of note, the technique has proved to be affected by less inter and intra-observer variability in several application. 4D-flow basic principles, advantages, limitations, common pitfalls and artefacts are described. This review will outline the basis of the formation of PC image, the construction of a 4D-flow and the huge impact the technique is having on the cardiovascular non-invasive examination. It will be then studied how this technique has had a huge impact on cardiovascular examinations especially on a central heart level
    corecore