1,256 research outputs found

    Groundwater research and management: integrating science into management decisions. Proceedings of IWMI-ITP-NIH International Workshop on "Creating Synergy Between Groundwater Research and Management in South and Southeast Asia," Roorkee, India, 8-9 February 2005

    Get PDF
    Groundwater management / Governance / Groundwater development / Artificial recharge / Water quality / Aquifers / Groundwater irrigation / Water balance / Simulation models / Watershed management / Water harvesting / Decision making / South East Asia / Bangladesh / China / India / Nepal / Pakistan / Syria

    Bioenergy modelling for Southern Africa - benchmarking Namibia and South Africa

    Get PDF
    Namibia and South Africa as part of Southern Africa are focussing on new technologies which on the one hand have the capacity to address energy shortages, particularly to increase power generation capacity; and on the other hand fulfil socio-economic development goals with minimal negative environmental impact. Bio-oil as a product from fast pyrolysis lends itself towards bioenergy production; to serve as a liquid fuel both for heat production and/or to fuel stationary engines or power generating equipment. Fast pyrolysis is a relatively new technology globally; and not yet introduced to Southern Africa. This research therefore describes bioenergy production via fast pyrolysis systems. The potential of the bioenergy so produced is investigated in terms of its potential to fill energy gaps, particularly power, as well as to fulfil socio-economic and environmental conservation targets in Namibia and South Africa. Namibia and South Africa possess vast wood-based biomass resources which can be converted to bioenergy via fast pyrolysis. This research models the wood-based biomass resources available for bioenergy production in Namibia and South Africa respectively; describes their physical and chemical properties and provides information on where they are located within, and how they can be harvested in a sustainable manner in Namibia and South Africa. The analysis to introduce fast pyrolysis into the Namibia and South Africa is based on an in-depth review of past experiences with pyrolysis technologies and the types of products successfully sold from various pyrolysis operations. The results of biomass modelling and description are used to model a bioenergy production system via fast pyrolysis. In Namibia fast pyrolysis operations are focusing on power generation in the Otjiwarongo and Okakarara farmland area, with a capacity of up to 20MW over a 20-year period. The power so generated is based on wood from bush encroachment only. In South Africa, the wood-based resource, i.e. alien plant species and bush encroachment, could provide communities in three provinces with at least 1MW but not more than 5MW power respectively over a period of at least 20 years. However, the introduction of new technologies and their products, such as fast pyrolysis and bio-oil for bioenergy production to Namibian and South African markets would be cumbersome. Technical and non-technical as well regulatory barriers have been identified; these need to be overcome before fast pyrolysis is accepted in the market

    Coastal plants for biofuel production and coastal preservation

    Get PDF
    ABSTRACT Sustainable and renewable biofuels as well as coastal preservation are important to the State of Louisiana which is losing its coastline at the rate of up to 100 square kilometers per year. This has important implications for other coastal areas worldwide. By managing water hyacinth in canals and lakes in coastal Louisiana the biomass of this fast growing aquatic plant can reduce coastal erosion by absorbing wave energy, and remediate waste water through bioabsorption of contaminants, while also providing a source of biofuel. This research has shown that coastal vegetation can play a part in lessening the impact of storms by reducing wave energy up to14%. Floating booms can hold water hyacinth in place along coastal canals so that it can be contained for growth and harvesting while providing this protection. Under average growing conditions in Louisiana, water hyacinth produced 2.4 to 2.6 metric tons of hydrated biomass per hectare per day. In addition this research found that this plant has a fermentable glucose and xylose content in excess of 48% by dry weight which is suitable for bioethanol production. Its rapid growth rate combined with its fermentable sugar concentration makes water hyacinth a viable candidate for use as a source of biofuel and for coastal preservation. Engineered barges fitted with loading mechanisms and harvesting systems were designed to contain and harvest water hyacinth in Louisiana’s coastal canals and to produce biofuel from harvested water hyacinth. Harvesting and growth site accessibility and design for transportation and proximity to coastal ethanol production facilities was integral to the design. Carbon neutral fuels are an important consideration related to environmental sustainability concerns. As the State of Louisiana is losing coastal wetlands the combination of erosion control with biofuel production will be a great benefit to the state and other coastal areas of the world

    Characterizing Climate Change Adaptation in Copenhagen

    Get PDF

    What type of shopping bag to use? Perspectives on the functionality and recycling of polymers

    Get PDF
    • …
    corecore