168 research outputs found

    Video streaming

    Get PDF

    Contribution to quality of user experience provision over wireless networks

    Get PDF
    The widespread expansion of wireless networks has brought new attractive possibilities to end users. In addition to the mobility capabilities provided by unwired devices, it is worth remarking the easy configuration process that a user has to follow to gain connectivity through a wireless network. Furthermore, the increasing bandwidth provided by the IEEE 802.11 family has made possible accessing to high-demanding services such as multimedia communications. Multimedia traffic has unique characteristics that make it greatly vulnerable against network impairments, such as packet losses, delay, or jitter. Voice over IP (VoIP) communications, video-conference, video-streaming, etc., are examples of these high-demanding services that need to meet very strict requirements in order to be served with acceptable levels of quality. Accomplishing these tough requirements will become extremely important during the next years, taking into account that consumer video traffic will be the predominant traffic in the Internet during the next years. In wired systems, these requirements are achieved by using Quality of Service (QoS) techniques, such as Differentiated Services (DiffServ), traffic engineering, etc. However, employing these methodologies in wireless networks is not that simple as many other factors impact on the quality of the provided service, e.g., fading, interferences, etc. Focusing on the IEEE 802.11g standard, which is the most extended technology for Wireless Local Area Networks (WLANs), it defines two different architecture schemes. On one hand, the infrastructure mode consists of a central point, which manages the network, assuming network controlling tasks such as IP assignment, routing, accessing security, etc. The rest of the nodes composing the network act as hosts, i.e., they send and receive traffic through the central point. On the other hand, the IEEE 802.11 ad-hoc configuration mode is less extended than the infrastructure one. Under this scheme, there is not a central point in the network, but all the nodes composing the network assume both host and router roles, which permits the quick deployment of a network without a pre-existent infrastructure. This type of networks, so called Mobile Ad-hoc NETworks (MANETs), presents interesting characteristics for situations when the fast deployment of a communication system is needed, e.g., tactics networks, disaster events, or temporary networks. The benefits provided by MANETs are varied, including high mobility possibilities provided to the nodes, network coverage extension, or network reliability avoiding single points of failure. The dynamic nature of these networks makes the nodes to react to topology changes as fast as possible. Moreover, as aforementioned, the transmission of multimedia traffic entails real-time constraints, necessary to provide these services with acceptable levels of quality. For those reasons, efficient routing protocols are needed, capable of providing enough reliability to the network and with the minimum impact to the quality of the service flowing through the nodes. Regarding quality measurements, the current trend is estimating what the end user actually perceives when consuming the service. This paradigm is called Quality of user Experience (QoE) and differs from the traditional Quality of Service (QoS) approach in the human perspective given to quality estimations. In order to measure the subjective opinion that a user has about a given service, different approaches can be taken. The most accurate methodology is performing subjective tests in which a panel of human testers rates the quality of the service under evaluation. This approach returns a quality score, so-called Mean Opinion Score (MOS), for the considered service in a scale 1 - 5. This methodology presents several drawbacks such as its high expenses and the impossibility of performing tests at real time. For those reasons, several mathematical models have been presented in order to provide an estimation of the QoE (MOS) reached by different multimedia services In this thesis, the focus is on evaluating and understanding the multimedia-content transmission-process in wireless networks from a QoE perspective. To this end, firstly, the QoE paradigm is explored aiming at understanding how to evaluate the quality of a given multimedia service. Then, the influence of the impairments introduced by the wireless transmission channel on the multimedia communications is analyzed. Besides, the functioning of different WLAN schemes in order to test their suitability to support highly demanding traffic such as the multimedia transmission is evaluated. Finally, as the main contribution of this thesis, new mechanisms or strategies to improve the quality of multimedia services distributed over IEEE 802.11 networks are presented. Concretely, the distribution of multimedia services over ad-hoc networks is deeply studied. Thus, a novel opportunistic routing protocol, so-called JOKER (auto-adJustable Opportunistic acK/timEr-based Routing) is presented. This proposal permits better support to multimedia services while reducing the energy consumption in comparison with the standard ad-hoc routing protocols.Universidad Politécnica de CartagenaPrograma Oficial de Doctorado en Tecnologías de la Información y Comunicacione

    Network and service monitoring in heterogeneous home networks

    Get PDF
    Home networks are becoming dynamic and technologically heterogeneous. They consist of an increasing number of devices which offer several functionalities and can be used for many different services. In the home, these devices are interconnected using a mixture of networking technologies (for example, Ethernet, Wifi, coaxial cable, or power-line). However, interconnecting these devices is often not easy. The increasing heterogeneity has led to significant device- and service-management complexity. In addition, home networks provide a critical "last meters" access to the public telecom and Internet infrastructure and have a dramatic impact on to the end-to-end reliability and performance of services from these networks. This challenges service providers not only to maintain a satisfactory quality of service level in such heterogeneous home networks, but also to remotely monitor and troubleshoot them. The present thesis work contributes research and several solutions in the field of network and service monitoring in home networks, mainly in three areas: (1) providing automatic device- and service-discovery and configuration, (2) remote management, and (3) providing quality of service (QoS). With regard to the first area, current service discovery technology is designed to relieve the increasing human role in network and service administration. However, the relevant Service Discovery Protocols (SDPs) are lacking crucial features namely: (1) they are not platform- and network-independent, and (2) they do not provide sufficient mechanisms for (device) resource reservation. Consequently, devices implementing different SDPs cannot communicate with each other and share their functionalities and resources in a managed way, especially when they use different network technologies. As a solution to the first problem, we propose a new proxy server architecture that enables IP-based devices and services to be discovered on non-IP based network and vice versa. We implemented the proxy architecture using UPnP respectively Bluetooth SDP as IP- and non-IP-based SDPs. The proxy allows Bluetooth devices and UPnP control points to discover, access, and utilize services located on the other network. Validation experiments with the proxy prototype showed that seamless inter-working can be achieved keeping all proxy functionalities on a single device, thus not requiring modification of currently existing UPnP and Bluetooth end devices. Although the proxy itself taxes the end-to-end performance of the service, it is shown to be still acceptable for an end user. For mitigating resource conflicts in SDPs, we propose a generic resource reservation scheme with properties derived from common SDP operation. Performance studies with a prototype showed that this reservation scheme significantly improves the scalability and sustainability of service access in SDPs, at a minor computational cost. With regard to the second area, it is known that the end-to-end quality of Internet services depends crucially on the performance of the home network. Consequently, service providers require the ability to monitor and configure devices in the home network, behind the home gateway (HG). However, they can only put limited requirements to these off-the-shelf devices, as the consumer electronics market is largely outside their span of control. Therefore they have to make intelligent use of the given device control and management protocols. In this work, we propose an architecture for remote discovery and management of devices in a highly heterogeneous home network. A proof-of-concept is developed for the remote management of UPnP devices in the home with a TR-069/UPnP proxy on the HG. Although this architecture is protocol specific, it can be easily adapted to other web-services based protocols. Service providers are also asking for diagnostic tools with which they can remotely troubleshoot the home networks. One of these tools should be able to gather information about the topology of the home network. Although topology discovery protocols already exist, nothing is known yet about their performance. In this work we propose a set of key performance indicators for home network topology discovery architectures, and how they should be measured. We applied them to the Link-Layer Topology Discovery (LLTD) protocol and the Link-Layer Discovery Protocol (LLDP). Our performance measurement results show that these protocols do not fulfill all the requirements as formulated by the service providers. With regard to the third area, current QoS solutions are mostly based on traffic classification. Because they need to be supported by all devices in the network, they are relatively expensive for home networks. Furthermore, they are not interoperable between different networking technologies. Alternative QoS provision techniques have been proposed in the literature. These techniques require end-user services to pragmatically adapt their properties to the actual condition of the network. For this, the condition of the home network in terms of its available bandwidth, delay, jitter, etc., needs to be known in real time. Appropriate tools for determining the available home network resources do not yet exist. In this work we propose a new method to probe the path capacity and available bandwidth between a server and a client in a home network. The main features of this method are: (a) it does not require adaptation of existing end devices, (b) it does not require pre-knowledge of the link-layer network topology, and (c) it is accurate enough to make reliable QoS predictions for the most relevant home applications. To use these predictions for effective service- or content-adaptation or admission control, one should also know how the state of the home network is expected to change immediately after the current state has been probed. However, not much is known about the stochastic properties of traffic in home networks. Based on a relatively small set of traffic observations in several home networks in the Netherlands, we were able to build a preliminary model for home network traffic dynamics

    Wireless triple play system

    Get PDF
    Dissertação para obtenção do Grau de Mestre em Engenharia Electrotécnica e ComputadoresTriple play is a service that combines three types of services: voice, data and multimedia over a single communication channel for a price that is less than the total price of the individual services. However there is no standard for provisioning the Triple play services, rather they are provisioned individually, since the requirements are quite different for each service. The digital revolution helped to create and deliver a high quality media solutions. One of the most demanding services is the Video on Demand (VoD). This implicates a dedicated streaming channel for each user in order to provide normal media player commands (as pause, fast forward). Most of the multimedia companies that develops personalized products does not always fulfil the users needs and are far from being cheap solutions. The goal of the project was to create a reliable and scalable triple play solution that works via Wireless Local Area Network (WLAN), fully capable of dealing with the existing state of the art multimedia technologies only resorting to open-source tools. This project was design to be a transparent web environment using only web technologies to maximize the potential of the services. HyperText Markup Language (HTML),Cascading Style Sheets (CSS) and JavaScript were the used technologies for the development of the applications. Both a administration and user interfaces were developed to fully manage all video contents and properly view it in a rich and appealing application, providing the proof of concept. The developed prototype was tested in a WLAN with up to four clients and the Quality of Service (QoS) and Quality of Experience (QoE) was measured for several combinations of active services. In the end it is possible to acknowledge that the developed prototype was capable of dealing with all the problems of WLAN technologies and successfully delivery all the proposed services with high QoE

    Video Quality Prediction for Video over Wireless Access Networks (UMTS and WLAN)

    Get PDF
    Transmission of video content over wireless access networks (in particular, Wireless Local Area Networks (WLAN) and Third Generation Universal Mobile Telecommunication System (3G UMTS)) is growing exponentially and gaining popularity, and is predicted to expose new revenue streams for mobile network operators. However, the success of these video applications over wireless access networks very much depend on meeting the user’s Quality of Service (QoS) requirements. Thus, it is highly desirable to be able to predict and, if appropriate, to control video quality to meet user’s QoS requirements. Video quality is affected by distortions caused by the encoder and the wireless access network. The impact of these distortions is content dependent, but this feature has not been widely used in existing video quality prediction models. The main aim of the project is the development of novel and efficient models for video quality prediction in a non-intrusive way for low bitrate and resolution videos and to demonstrate their application in QoS-driven adaptation schemes for mobile video streaming applications. This led to five main contributions of the thesis as follows:(1) A thorough understanding of the relationships between video quality, wireless access network (UMTS and WLAN) parameters (e.g. packet/block loss, mean burst length and link bandwidth), encoder parameters (e.g. sender bitrate, frame rate) and content type is provided. An understanding of the relationships and interactions between them and their impact on video quality is important as it provides a basis for the development of non-intrusive video quality prediction models.(2) A new content classification method was proposed based on statistical tools as content type was found to be the most important parameter. (3) Efficient regression-based and artificial neural network-based learning models were developed for video quality prediction over WLAN and UMTS access networks. The models are light weight (can be implemented in real time monitoring), provide a measure for user perceived quality, without time consuming subjective tests. The models have potential applications in several other areas, including QoS control and optimization in network planning and content provisioning for network/service providers.(4) The applications of the proposed regression-based models were investigated in (i) optimization of content provisioning and network resource utilization and (ii) A new fuzzy sender bitrate adaptation scheme was presented at the sender side over WLAN and UMTS access networks. (5) Finally, Internet-based subjective tests that captured distortions caused by the encoder and the wireless access network for different types of contents were designed. The database of subjective results has been made available to research community as there is a lack of subjective video quality assessment databases.Partially sponsored by EU FP7 ADAMANTIUM Project (EU Contract 214751

    Context-awareness for ubiquitous media service delivery in next generation networks

    Get PDF
    Les récentes avancées technologiques permettent désormais la fabrication de terminaux mobiles de plus en plus compacts et dotés de plusieurs interfaces réseaux. Le nouveau modèle de consommation de médias se résume par le concept "Anytime, Anywhere, Any Device" et impose donc de nouvelles exigences en termes de déploiement de services ubiquitaires. Cependant la conception et le developpement de réseaux ubiquitaires et convergents de nouvelles générations soulèvent un certain nombre de défis techniques. Les standards actuels ainsi que les solutions commerciales pourraient être affectés par le manque de considération du contexte utilisateur. Le ressenti de l'utilisateur concernant certains services multimédia tels que la VoIP et l'IPTV dépend fortement des capacités du terminal et des conditions du réseau d'accès. Cela incite les réseaux de nouvelles générations à fournir des services ubiquitaires adaptés à l'environnement de l'utilisateur optimisant par la même occasion ses resources. L'IP Multimedia Subsystem (IMS) est une architecture de nouvelle génération qui centralise l'accès aux services et permet la convergence des réseaux fixe/mobile. Néanmoins, l'évolution de l'IMS est nécessaire sur les points suivants :- l'introduction de la sensibilité au contexte utilisateur et de la PQoS (Perceived QoS) : L'architecture IMS ne prend pas en compte l'environnement de l'utilisateur, ses préférences et ne dispose pas d'un méchanisme de gestion de PQOS. Pour s'assurer de la qualité fournit à l'utilisateur final, des informations sur l'environnement de l'utilisateur ainsi que ses préférences doivent transiter en cœur de réseau afin d'y être analysés. Ce traitement aboutit au lancement du service qui sera adapté et optimisé aux conditions observées. De plus pour le service d'IPTV, les caractéristiques spatio-temporelles de la vidéo influent de manière importante sur la PQoS observée côté utilisateur. L'adaptation des services multimédias en fonction de l'évolution du contexte utilisateur et de la nature de la vidéo diffusée assure une qualité d'expérience à l'utilisateur et optimise par la même occasion l'utilisation des ressources en cœur de réseau.- une solution de mobilité efficace pour les services conversationnels tels que la VoIP : Les dernières publications 3GPP fournissent deux solutions de mobilité: le LTE proposeMIP comme solution de mobilité alors que l'IMS définit une mobilité basée sur le protocoleapplicatif SIP. Ces standards définissent le système de signalisation mais ne s'avancent pas sur la gestion du flux média lors du changement d'interface réseau. La deuxième section introduit une étude comparative détaillée des solutions de mobilité dans les NGNs.Notre première contribution est la spécification de l'architecture globale de notre plateforme IMS sensible au contexte utilisateur réalisée au sein du projet Européen ADAMANTIUM. Nous détaillons tout d'abord le serveur MCMS intelligent placé dans la couche application de l'IMS. Cet élément récolte les informations de qualité de services à différents équipements réseaux et prend la décision d'une action sur l'un de ces équipements. Ensuite nous définissons un profil utilisateur permettant de décrire son environnement et de le diffuser en coeur de réseau. Une étude sur la prédiction de satisfaction utilisateur en fonction des paramètres spatio-temporels de la vidéo a été réalisée afin de connaître le débit idéal pour une PQoS désirée.Notre deuxième contribution est l'introduction d'une solution de mobilité adaptée aux services conversationnels (VoIP) tenant compte du contexte utilisateur. Notre solution s'intègre à l'architecture IMS existante de façon transparente et permet de réduire le temps de latence du handover. Notre solution duplique les paquets de VoIP sur les deux interfaces actives pendant le temps de la transition. Parallèlement, un nouvel algorithme de gestion de mémoire tampon améliore la qualité d'expérience pour le service de VoIP.The latest advances in technology have already defied Moore s law. Thanks to research and industry, hand-held devices are composed of high processing embedded systems enabling the consumption of high quality services. Furthermore, recent trends in communication drive users to consume media Anytime, Anywhere on Any Device via multiple wired and wireless network interfaces. This creates new demands for ubiquitous and high quality service provision management. However, defining and developing the next generation of ubiquitous and converged networks raise a number of challenges. Currently, telecommunication standards do not consider context-awareness aspects for network management and service provisioning. The experience felt by the end-user consuming for instance Voice over IP (VoIP) or Internet Protocol TeleVision (IPTV) services varies depending mainly on user preferences, device context and network resources. It is commonly held that Next Generation Network (NGN) should deliver personalized and effective ubiquitous services to the end user s Mobile Node (MN) while optimizing the network resources at the network operator side. IP Multimedia Subsystem (IMS) is a standardized NGN framework that unifies service access and allows fixed/mobile network convergence. Nevertheless IMS technology still suffers from a number of confining factors that are addressed in this thesis; amongst them are two main issues :The lack of context-awareness and Perceived-QoS (PQoS):-The existing IMS infrastructure does not take into account the environment of the user ,his preferences , and does not provide any PQoS aware management mechanism within its service provisioning control system. In order to ensure that the service satisfies the consumer, this information need to be sent to the core network for analysis. In order to maximize the end-user satisfaction while optimizing network resources, the combination of a user-centric network management and adaptive services according to the user s environment and network conditions are considered. Moreover, video content dynamics are also considered as they significantly impact on the deduced perceptual quality of IPTV services. -The lack of efficient mobility mechanism for conversational services like VoIP :The latest releases of Third Generation Partnership Project (3GPP) provide two types of mobility solutions. Long-Term Evolution (LTE) uses Mobile IP (MIP) and IMS uses Session Initiation Protocol (SIP) mobility. These standards are focusing on signaling but none of them define how the media should be scheduled in multi-homed devices. The second section introduces a detailed study of existing mobility solutions in NGNs. Our first contribution is the specification of the global context-aware IMS architecture proposed within the European project ADAptative Management of mediA distributioN based on saTisfaction orIented User Modeling (ADAMANTIUM). We introduce the innovative Multimedia Content Management System (MCMS) located in the application layer of IMS. This server combines the collected monitoring information from different network equipments with the data of the user profile and takes adaptation actions if necessary. Then, we introduce the User Profile (UP) management within the User Equipment (UE) describing the end-user s context and facilitating the diffusion of the end-user environment towards the IMS core network. In order to optimize the network usage, a PQoS prediction mechanism gives the optimal video bit-rate according to the video content dynamics. Our second contribution in this thesis is an efficient mobility solution for VoIP service within IMS using and taking advantage of user context. Our solution uses packet duplication on both active interfaces during handover process. In order to leverage this mechanism, a new jitter buffer algorithm is proposed at MN side to improve the user s quality of experience. Furthermore, our mobility solution integrates easily to the existing IMS platform.BORDEAUX1-Bib.electronique (335229901) / SudocSudocFranceF

    Packet-Layer Quality Assessment for Networked Video

    Get PDF
    To realize real-time and non-intrusive quality monitoring for networked video, a content-adaptive packet-layer model for quality assessment is proposed. Considering the fact that the coding distortion of a video is dependent not only on the bit-rate but also on the motion characteristic of the video content, temporal complexity is evaluated and incorporated in quality assessment in the proposed model. Since very limited information is available for a packet-layer model, an adaptive method for frame type detection is first applied. Then the temporal complexity which reflects the motion characteristic of the video content is estimated using the ratio of the bit-rate for coding I frames and P frames. The estimated temporal complexity is incorporated in the proposed model, making it adaptive to different video content. Experimental results show that the proposed model achieves an advanced performance in comparison with the ITU-T G.1070 model

    Avaliação do desempenho de novos serviços em redes IP

    Get PDF
    Mestrado em Engenharia Electrónica e TelecomunicaçõesOs benefícios económicos de fornecer múltiplos serviços numa única rede têm despertado grande interesse na introdução dos serviços VoIP e IPTV na internet. No entanto, estes serviços possuem requisitos rigorosos de qualidade de serviço, que a internet não está preparada para fornecer. Esta dissertação possui dois objectivos principais: O primeiro consiste em testar o comportamento dos serviços de IPTV e VoIP nas tecnologias IP existentes como Ethernet, IEEE 802.11 e ADSL quando expostas a diferentes condições de carga. Pretende-se também identificar os efeitos nos serviços de VoIP e IPTV de outros serviços como FTP, correio electrónico e HTTP. Foi utilizado OpNet um simulador de redes bastante popular ao no ambiente académico. Os resultados das simulações fornecem orientações importantes sobre a capacidade máxima de cada tecnologia tendo em conta os requisitos de qualidade de serviço; por outro lado identificam os serviços mais destrutivos para IPTV e VoIP. O segundo objectivo é a implementação de um modelo que permite a monitorização dos serviços de VoIP e IPTV, analisa os indicadores de desempenho reunidos e grava esses indicadores numa base de dados. Todo este processo será efectuado em tempo real com o objectivo de manter a base de dados actualizada. Os resultados disponibilizados por esta estrutura permitem uma melhor gestão da rede, os prestadores de serviços podem ter informações actualizadas sobre o desempenho dos seus serviços, consequentemente é possível identificar uma falha ou uma tendência futura. ABSTRACT: The economical benefits of providing multiple services over a single network infrastructure have spawned great interest in the introduction of new services, such VoIP and IPTV, in the Internet. However, these services have stringent Quality of Service requirements that the Internet was not designed to meet. This dissertation has two main objectives: The first objective is to test the behavior of IPTV and VoIP services in the existing IP network technologies such as Ethernet, IEEE 802.11 and ADSL when exposed to different load conditions; and identify the effects of other services such as FTP, Email and HTTP in VoIP and IPTV demands. In our work we use OpNet, a popular network simulator in the academic environment. The simulation results provide important guidelines about the maximum capacity of each technology keeping in mind QoS requirements; on the other hand, they enable identification of the most damaging services for VoIP and IPTV. The second objective is the implementation of a framework that allows monitoring VoIP and IPTV services, analyzing the collected performance measurements, and storing them in a database; all these processes will be performed in real time in order to keep the database up to date. The results available by this framework allow a better network management, the service providers can have current information about their services performance, and consequently it is possible to identify a failure or a future trend
    corecore