9,217 research outputs found

    An exponential separation between MA and AM proofs of proximity

    Get PDF
    Interactive proofs of proximity allow a sublinear-time verifier to check that a given input is close to the language, using a small amount of communication with a powerful (but untrusted) prover. In this work we consider two natural minimally interactive variants of such proofs systems, in which the prover only sends a single message, referred to as the proof. The first variant, known as MA-proofs of Proximity (MAP), is fully non-interactive, meaning that the proof is a function of the input only. The second variant, known as AM-proofs of Proximity (AMP), allows the proof to additionally depend on the verifier's (entire) random string. The complexity of both MAPs and AMPs is the total number of bits that the verifier observes - namely, the sum of the proof length and query complexity. Our main result is an exponential separation between the power of MAPs and AMPs. Specifically, we exhibit an explicit and natural property Pi that admits an AMP with complexity O(log n), whereas any MAP for Pi has complexity Omega~(n^{1/4}), where n denotes the length of the input in bits. Our MAP lower bound also yields an alternate proof, which is more general and arguably much simpler, for a recent result of Fischer et al. (ITCS, 2014). Lastly, we also consider the notion of oblivious proofs of proximity, in which the verifier's queries are oblivious to the proof. In this setting we show that AMPs can only be quadratically stronger than MAPs. As an application of this result, we show an exponential separation between the power of public and private coin for oblivious interactive proofs of proximity

    Zero-Knowledge Proofs of Proximity

    Get PDF
    Interactive proofs of proximity (IPPs) are interactive proofs in which the verifier runs in time sub-linear in the input length. Since the verifier cannot even read the entire input, following the property testing literature, we only require that the verifier reject inputs that are far from the language (and, as usual, accept inputs that are in the language). In this work, we initiate the study of zero-knowledge proofs of proximity (ZKPP). A ZKPP convinces a sub-linear time verifier that the input is close to the language (similarly to an IPP) while simultaneously guaranteeing a natural zero-knowledge property. Specifically, the verifier learns nothing beyond (1) the fact that the input is in the language, and (2) what it could additionally infer by reading a few bits of the input. Our main focus is the setting of statistical zero-knowledge where we show that the following hold unconditionally (where N denotes the input length): - Statistical ZKPPs can be sub-exponentially more efficient than property testers (or even non-interactive IPPs): We show a natural property which has a statistical ZKPP with a polylog(N) time verifier, but requires Omega(sqrt(N)) queries (and hence also runtime) for every property tester. - Statistical ZKPPs can be sub-exponentially less efficient than IPPs: We show a property which has an IPP with a polylog(N) time verifier, but cannot have a statistical ZKPP with even an N^(o(1)) time verifier. - Statistical ZKPPs for some graph-based properties such as promise versions of expansion and bipartiteness, in the bounded degree graph model, with polylog(N) time verifiers exist. Lastly, we also consider the computational setting where we show that: - Assuming the existence of one-way functions, every language computable either in (logspace uniform) NC or in SC, has a computational ZKPP with a (roughly) sqrt(N) time verifier. - Assuming the existence of collision-resistant hash functions, every language in NP has a statistical zero-knowledge argument of proximity with a polylog(N) time verifier

    Rational Proofs with Multiple Provers

    Full text link
    Interactive proofs (IP) model a world where a verifier delegates computation to an untrustworthy prover, verifying the prover's claims before accepting them. IP protocols have applications in areas such as verifiable computation outsourcing, computation delegation, cloud computing. In these applications, the verifier may pay the prover based on the quality of his work. Rational interactive proofs (RIP), introduced by Azar and Micali (2012), are an interactive-proof system with payments, in which the prover is rational rather than untrustworthy---he may lie, but only to increase his payment. Rational proofs leverage the provers' rationality to obtain simple and efficient protocols. Azar and Micali show that RIP=IP(=PSAPCE). They leave the question of whether multiple provers are more powerful than a single prover for rational and classical proofs as an open problem. In this paper, we introduce multi-prover rational interactive proofs (MRIP). Here, a verifier cross-checks the provers' answers with each other and pays them according to the messages exchanged. The provers are cooperative and maximize their total expected payment if and only if the verifier learns the correct answer to the problem. We further refine the model of MRIP to incorporate utility gap, which is the loss in payment suffered by provers who mislead the verifier to the wrong answer. We define the class of MRIP protocols with constant, noticeable and negligible utility gaps. We give tight characterization for all three MRIP classes. We show that under standard complexity-theoretic assumptions, MRIP is more powerful than both RIP and MIP ; and this is true even the utility gap is required to be constant. Furthermore the full power of each MRIP class can be achieved using only two provers and three rounds. (A preliminary version of this paper appeared at ITCS 2016. This is the full version that contains new results.)Comment: Proceedings of the 2016 ACM Conference on Innovations in Theoretical Computer Science. ACM, 201

    Strong ETH Breaks With Merlin and Arthur: Short Non-Interactive Proofs of Batch Evaluation

    Get PDF
    We present an efficient proof system for Multipoint Arithmetic Circuit Evaluation: for every arithmetic circuit C(x1,,xn)C(x_1,\ldots,x_n) of size ss and degree dd over a field F{\mathbb F}, and any inputs a1,,aKFna_1,\ldots,a_K \in {\mathbb F}^n, \bullet the Prover sends the Verifier the values C(a1),,C(aK)FC(a_1), \ldots, C(a_K) \in {\mathbb F} and a proof of O~(Kd)\tilde{O}(K \cdot d) length, and \bullet the Verifier tosses poly(log(dKF/ε))\textrm{poly}(\log(dK|{\mathbb F}|/\varepsilon)) coins and can check the proof in about O~(K(n+d)+s)\tilde{O}(K \cdot(n + d) + s) time, with probability of error less than ε\varepsilon. For small degree dd, this "Merlin-Arthur" proof system (a.k.a. MA-proof system) runs in nearly-linear time, and has many applications. For example, we obtain MA-proof systems that run in cnc^{n} time (for various c<2c < 2) for the Permanent, #\#Circuit-SAT for all sublinear-depth circuits, counting Hamiltonian cycles, and infeasibility of 00-11 linear programs. In general, the value of any polynomial in Valiant's class VP{\sf VP} can be certified faster than "exhaustive summation" over all possible assignments. These results strongly refute a Merlin-Arthur Strong ETH and Arthur-Merlin Strong ETH posed by Russell Impagliazzo and others. We also give a three-round (AMA) proof system for quantified Boolean formulas running in 22n/3+o(n)2^{2n/3+o(n)} time, nearly-linear time MA-proof systems for counting orthogonal vectors in a collection and finding Closest Pairs in the Hamming metric, and a MA-proof system running in nk/2+O(1)n^{k/2+O(1)}-time for counting kk-cliques in graphs. We point to some potential future directions for refuting the Nondeterministic Strong ETH.Comment: 17 page

    The Quantum PCP Conjecture

    Full text link
    The classical PCP theorem is arguably the most important achievement of classical complexity theory in the past quarter century. In recent years, researchers in quantum computational complexity have tried to identify approaches and develop tools that address the question: does a quantum version of the PCP theorem hold? The story of this study starts with classical complexity and takes unexpected turns providing fascinating vistas on the foundations of quantum mechanics, the global nature of entanglement and its topological properties, quantum error correction, information theory, and much more; it raises questions that touch upon some of the most fundamental issues at the heart of our understanding of quantum mechanics. At this point, the jury is still out as to whether or not such a theorem holds. This survey aims to provide a snapshot of the status in this ongoing story, tailored to a general theory-of-CS audience.Comment: 45 pages, 4 figures, an enhanced version of the SIGACT guest column from Volume 44 Issue 2, June 201

    Non-Cooperative Rational Interactive Proofs

    Get PDF
    Interactive-proof games model the scenario where an honest party interacts with powerful but strategic provers, to elicit from them the correct answer to a computational question. Interactive proofs are increasingly used as a framework to design protocols for computation outsourcing. Existing interactive-proof games largely fall into two categories: either as games of cooperation such as multi-prover interactive proofs and cooperative rational proofs, where the provers work together as a team; or as games of conflict such as refereed games, where the provers directly compete with each other in a zero-sum game. Neither of these extremes truly capture the strategic nature of service providers in outsourcing applications. How to design and analyze non-cooperative interactive proofs is an important open problem. In this paper, we introduce a mechanism-design approach to define a multi-prover interactive-proof model in which the provers are rational and non-cooperative - they act to maximize their expected utility given others\u27 strategies. We define a strong notion of backwards induction as our solution concept to analyze the resulting extensive-form game with imperfect information. We fully characterize the complexity of our proof system under different utility gap guarantees. (At a high level, a utility gap of u means that the protocol is robust against provers that may not care about a utility loss of 1/u.) We show, for example, that the power of non-cooperative rational interactive proofs with a polynomial utility gap is exactly equal to the complexity class P^{NEXP}

    Efficient UC Commitment Extension with Homomorphism for Free (and Applications)

    Get PDF
    Homomorphic universally composable (UC) commitments allow for the sender to reveal the result of additions and multiplications of values contained in commitments without revealing the values themselves while assuring the receiver of the correctness of such computation on committed values. In this work, we construct essentially optimal additively homomorphic UC commitments from any (not necessarily UC or homomorphic) extractable commitment. We obtain amortized linear computational complexity in the length of the input messages and rate 1. Next, we show how to extend our scheme to also obtain multiplicative homomorphism at the cost of asymptotic optimality but retaining low concrete complexity for practical parameters. While the previously best constructions use UC oblivious transfer as the main building block, our constructions only require extractable commitments and PRGs, achieving better concrete efficiency and offering new insights into the sufficient conditions for obtaining homomorphic UC commitments. Moreover, our techniques yield public coin protocols, which are compatible with the Fiat-Shamir heuristic. These results come at the cost of realizing a restricted version of the homomorphic commitment functionality where the sender is allowed to perform any number of commitments and operations on committed messages but is only allowed to perform a single batch opening of a number of commitments. Although this functionality seems restrictive, we show that it can be used as a building block for more efficient instantiations of recent protocols for secure multiparty computation and zero knowledge non-interactive arguments of knowledge
    corecore