11,166 research outputs found

    TRECVID 2004 - an overview

    Get PDF

    TREC video retrieval evaluation: a case study and status report

    Get PDF
    The TREC Video Retrieval Evaluation is a multiyear, international effort, funded by the US Advanced Research and Development Agency (ARDA) and the National Institute of Standards and Technology (NIST) to promote progress in content-based retrieval from digital video via open, metrics-based evaluation. Now beginning its fourth year, it aims over time to develop both a better understanding of how systems can effectively accomplish such retrieval and how one can reliably benchmark their performance. This paper can be seen as a case study in the development of video retrieval systems and their evaluation as well as a report on their status to-date. After an introduction to the evolution of the evaluation over the past three years, the paper reports on the most recent evaluation TRECVID 2003: the evaluation framework — the 4 tasks (shot boundary determination, high-level feature extraction, story segmentation and typing, search), 133 hours of US television news data, and measures —, the results, and the approaches taken by the 24 participating groups

    MonoPerfCap: Human Performance Capture from Monocular Video

    Full text link
    We present the first marker-less approach for temporally coherent 3D performance capture of a human with general clothing from monocular video. Our approach reconstructs articulated human skeleton motion as well as medium-scale non-rigid surface deformations in general scenes. Human performance capture is a challenging problem due to the large range of articulation, potentially fast motion, and considerable non-rigid deformations, even from multi-view data. Reconstruction from monocular video alone is drastically more challenging, since strong occlusions and the inherent depth ambiguity lead to a highly ill-posed reconstruction problem. We tackle these challenges by a novel approach that employs sparse 2D and 3D human pose detections from a convolutional neural network using a batch-based pose estimation strategy. Joint recovery of per-batch motion allows to resolve the ambiguities of the monocular reconstruction problem based on a low dimensional trajectory subspace. In addition, we propose refinement of the surface geometry based on fully automatically extracted silhouettes to enable medium-scale non-rigid alignment. We demonstrate state-of-the-art performance capture results that enable exciting applications such as video editing and free viewpoint video, previously infeasible from monocular video. Our qualitative and quantitative evaluation demonstrates that our approach significantly outperforms previous monocular methods in terms of accuracy, robustness and scene complexity that can be handled.Comment: Accepted to ACM TOG 2018, to be presented on SIGGRAPH 201

    TRECVID 2003 - an overview

    Get PDF
    corecore