332 research outputs found

    Non-idempotent intersection types and strong normalisation

    Full text link

    Filter models: non-idempotent intersection types, orthogonality and polymorphism - long version

    No full text
    This paper revisits models of typed lambda-calculus based on filters of intersection types: By using non-idempotent intersections, we simplify a methodology that produces modular proofs of strong normalisation based on filter models. Non-idempotent intersections provide a decreasing measure proving a key termination property, simpler than the reducibility techniques used with idempotent intersections. Such filter models are shown to be captured by orthogonality techniques: we formalise an abstract notion of orthogonality model inspired by classical realisability, and express a filter model as one of its instances, along with two term-models (one of which captures a now common technique for strong normalisation). Applying the above range of model constructions to Curry-style System F describes at different levels of detail how the infinite polymorphism of System F can systematically be reduced to the finite polymorphism of intersection types

    Filter Models: Non-idempotent Intersection Types, Orthogonality and Polymorphism

    Get PDF
    This paper revisits models of typed lambda calculus based on filters of intersection types: By using non-idempotent intersections, we simplify a methodology that produces modular proofs of strong normalisation based on filter models. Building such a model for some type theory shows that typed terms can be typed with intersections only, and are therefore strongly normalising. Non-idempotent intersections provide a decreasing measure proving a key termination property, simpler than the reducibility techniques used with idempotent intersections. Such filter models are shown to be captured by orthogonality techniques: we formalise an abstract notion of orthogonality model inspired by classical realisability, and express a filter model as one of its instances, along with two term-models (one of which captures a now common technique for strong normalisation). Applying the above range of model constructions to Curry-style System F describes at different levels of detail how the infinite polymorphism of System F can systematically be reduced to the finite polymorphism of intersection types

    Inhabitation for Non-idempotent Intersection Types

    Full text link
    The inhabitation problem for intersection types in the lambda-calculus is known to be undecidable. We study the problem in the case of non-idempotent intersection, considering several type assignment systems, which characterize the solvable or the strongly normalizing lambda-terms. We prove the decidability of the inhabitation problem for all the systems considered, by providing sound and complete inhabitation algorithms for them

    Call-by-value non-determinism in a linear logic type discipline

    Get PDF
    We consider the call-by-value lambda-calculus extended with a may-convergent non-deterministic choice and a must-convergent parallel composition. Inspired by recent works on the relational semantics of linear logic and non-idempotent intersection types, we endow this calculus with a type system based on the so-called Girard's second translation of intuitionistic logic into linear logic. We prove that a term is typable if and only if it is converging, and that its typing tree carries enough information to give a bound on the length of its lazy call-by-value reduction. Moreover, when the typing tree is minimal, such a bound becomes the exact length of the reduction

    A semantic account of strong normalization in Linear Logic

    Full text link
    We prove that given two cut free nets of linear logic, by means of their relational interpretations one can: 1) first determine whether or not the net obtained by cutting the two nets is strongly normalizable 2) then (in case it is strongly normalizable) compute the maximal length of the reduction sequences starting from that net.Comment: 41 page

    Realisability Semantics for Intersection Types and Expansion Variables

    Get PDF
    Expansion was invented at the end of the 1970s for calculating principal typings for λ\lambda-terms in type systems with intersection types. Expansion variables (E-variables) were invented at the end of the 1990s to simplify and help mechanise expansion. Recently, E-variables have been further simplified and generalised to also allow calculating type operators other than just intersection. There has been much work on denotational semantics for type systems with intersection types, but none whatsoever before now on type systems with E-variables. Building a semantics for E-variables turns out to be challenging. To simplify the problem, we consider only E-variables, and not the corresponding operation of expansion. We develop a realisability semantics where each use of an E-variable in a type corresponds to an independent degree at which evaluation occurs in the λ\lambda-term that is assigned the type. In the λ\lambda-term being evaluated, the only interaction possible between portions at different degrees is that higher degree portions can be passed around but never applied to lower degree portions. We apply this semantics to two intersection type systems. We show these systems are sound, that completeness does not hold for the first system, and completeness holds for the second system when only one E-variable is allowed (although it can be used many times and nested). As far as we know, this is the first study of a denotational semantics of intersection type systems with E-variables (using realisability or any other approach)

    Resource control and intersection types: an intrinsic connection

    Get PDF
    In this paper we investigate the λ\lambda -calculus, a λ\lambda-calculus enriched with resource control. Explicit control of resources is enabled by the presence of erasure and duplication operators, which correspond to thinning and con-traction rules in the type assignment system. We introduce directly the class of λ\lambda -terms and we provide a new treatment of substitution by its decompo-sition into atomic steps. We propose an intersection type assignment system for λ\lambda -calculus which makes a clear correspondence between three roles of variables and three kinds of intersection types. Finally, we provide the characterisation of strong normalisation in λ\lambda -calculus by means of an in-tersection type assignment system. This process uses typeability of normal forms, redex subject expansion and reducibility method.Comment: arXiv admin note: substantial text overlap with arXiv:1306.228
    corecore