839 research outputs found

    Hamiltonian Cycles in Polyhedral Maps

    Full text link
    We present a necessary and sufficient condition for existence of a contractible, non-separating and noncontractible separating Hamiltonian cycle in the edge graph of polyhedral maps on surfaces. In particular, we show the existence of contractible Hamiltonian cycle in equivelar triangulated maps. We also present an algorithm to construct such cycles whenever it exists.Comment: 14 page

    Hamiltonicity in multitriangular graphs

    Get PDF
    The family of 5-valent polyhedral graphs whose faces are all triangles or 3s-gons, s ≥ 9, is shown to contain non-hamiltonian graphs and to have a shortness exponent smaller than one

    On cubic polyhedral graphs with prescribed adjacency properties of their faces

    Get PDF
    AbstractWe consider classes of cubic polyhedral graphs whose non-q-gonal faces are adjacent to q-gonal faces only. Structural properties of some classes of such graphs are described. For q = 5 we show that all the graphs in this class are cyclically 4-edge-connected. Some cyclically 4edge-connected and cyclically 5-edge-connected non-Hamiltonian members from this class are presented

    Hamiltonian submanifolds of regular polytopes

    Full text link
    We investigate polyhedral 2k2k-manifolds as subcomplexes of the boundary complex of a regular polytope. We call such a subcomplex {\it kk-Hamiltonian} if it contains the full kk-skeleton of the polytope. Since the case of the cube is well known and since the case of a simplex was also previously studied (these are so-called {\it super-neighborly triangulations}) we focus on the case of the cross polytope and the sporadic regular 4-polytopes. By our results the existence of 1-Hamiltonian surfaces is now decided for all regular polytopes. Furthermore we investigate 2-Hamiltonian 4-manifolds in the dd-dimensional cross polytope. These are the "regular cases" satisfying equality in Sparla's inequality. In particular, we present a new example with 16 vertices which is highly symmetric with an automorphism group of order 128. Topologically it is homeomorphic to a connected sum of 7 copies of S2×S2S^2 \times S^2. By this example all regular cases of nn vertices with n<20n < 20 or, equivalently, all cases of regular dd-polytopes with d9d\leq 9 are now decided.Comment: 26 pages, 4 figure

    Exact Topological Quantum Order in D=3 and Beyond: Branyons and Brane-Net Condensates

    Full text link
    We construct an exactly solvable Hamiltonian acting on a 3-dimensional lattice of spin-12\frac 1 2 systems that exhibits topological quantum order. The ground state is a string-net and a membrane-net condensate. Excitations appear in the form of quasiparticles and fluxes, as the boundaries of strings and membranes, respectively. The degeneracy of the ground state depends upon the homology of the 3-manifold. We generalize the system to D4D\geq 4, were different topological phases may occur. The whole construction is based on certain special complexes that we call colexes.Comment: Revtex4 file, color figures, minor correction

    Computing symmetry groups of polyhedra

    Full text link
    Knowing the symmetries of a polyhedron can be very useful for the analysis of its structure as well as for practical polyhedral computations. In this note, we study symmetry groups preserving the linear, projective and combinatorial structure of a polyhedron. In each case we give algorithmic methods to compute the corresponding group and discuss some practical experiences. For practical purposes the linear symmetry group is the most important, as its computation can be directly translated into a graph automorphism problem. We indicate how to compute integral subgroups of the linear symmetry group that are used for instance in integer linear programming.Comment: 20 pages, 1 figure; containing a corrected and improved revisio
    corecore