389 research outputs found

    Low rank methods for optimizing clustering

    Get PDF
    Complex optimization models and problems in machine learning often have the majority of information in a low rank subspace. By careful exploitation of these low rank structures in clustering problems, we find new optimization approaches that reduce the memory and computational cost. We discuss two cases where this arises. First, we consider the NEO-K-Means (Non-Exhaustive, Overlapping K-Means) objective as a way to address overlapping and outliers in an integrated fashion. Optimizing this discrete objective is NP-hard, and even though there is a convex relaxation of the objective, straightforward convex optimization approaches are too expensive for large datasets. We utilize low rank structures in the solution matrix of the convex formulation and use a low-rank factorization of the solution matrix directly as a practical alternative. The resulting optimization problem is non-convex, but has a smaller number of solution variables, and can be locally optimized using an augmented Lagrangian method. In addition, we consider two fast multiplier methods to accelerate the convergence of the augmented Lagrangian scheme: a proximal method of multipliers and an alternating direction method of multipliers. For the proximal augmented Lagrangian, we show a convergence result for the non-convex case with bound-constrained subproblems. When the clustering performance is evaluated on real-world datasets, we show this technique is effective in finding the ground-truth clusters and cohesive overlapping communities in real-world networks. The second case is where the low-rank structure appears in the objective function. Inspired by low rank matrix completion techniques, we propose a low rank symmetric matrix completion scheme to approximate a kernel matrix. For the kernel k-means problem, we show empirically that the clustering performance with the approximation is comparable to the full kernel k-means

    Large-Scale Sensor Network Localization via Rigid Subnetwork Registration

    Full text link
    In this paper, we describe an algorithm for sensor network localization (SNL) that proceeds by dividing the whole network into smaller subnetworks, then localizes them in parallel using some fast and accurate algorithm, and finally registers the localized subnetworks in a global coordinate system. We demonstrate that this divide-and-conquer algorithm can be used to leverage existing high-precision SNL algorithms to large-scale networks, which could otherwise only be applied to small-to-medium sized networks. The main contribution of this paper concerns the final registration phase. In particular, we consider a least-squares formulation of the registration problem (both with and without anchor constraints) and demonstrate how this otherwise non-convex problem can be relaxed into a tractable convex program. We provide some preliminary simulation results for large-scale SNL demonstrating that the proposed registration algorithm (together with an accurate localization scheme) offers a good tradeoff between run time and accuracy.Comment: 5 pages, 8 figures, 1 table. To appear in Proc. IEEE International Conference on Acoustics, Speech, and Signal Processing, April 19-24, 201

    Linear Precoding in Cooperative MIMO Cellular Networks with Limited Coordination Clusters

    Full text link
    In a cooperative multiple-antenna downlink cellular network, maximization of a concave function of user rates is considered. A new linear precoding technique called soft interference nulling (SIN) is proposed, which performs at least as well as zero-forcing (ZF) beamforming. All base stations share channel state information, but each user's message is only routed to those that participate in the user's coordination cluster. SIN precoding is particularly useful when clusters of limited sizes overlap in the network, in which case traditional techniques such as dirty paper coding or ZF do not directly apply. The SIN precoder is computed by solving a sequence of convex optimization problems. SIN under partial network coordination can outperform ZF under full network coordination at moderate SNRs. Under overlapping coordination clusters, SIN precoding achieves considerably higher throughput compared to myopic ZF, especially when the clusters are large.Comment: 13 pages, 5 figure
    corecore