2,703 research outputs found

    Higher-order symmetric duality in nondifferentiable multiobjective programming problems

    Get PDF
    AbstractIn this paper, a pair of nondifferentiable multiobjective programming problems is first formulated, where each of the objective functions contains a support function of a compact convex set in Rn. For a differentiable function h:Rn×Rn→R, we introduce the definitions of the higher-order F-convexity (F-pseudo-convexity, F-quasi-convexity) of function f:Rn→R with respect to h. When F and h are taken certain appropriate transformations, all known other generalized invexity, such as η-invexity, type I invexity and higher-order type I invexity, can be put into the category of the higher-order F-invex functions. Under these the higher-order F-convexity assumptions, we prove the higher-order weak, higher-order strong and higher-order converse duality theorems related to a properly efficient solution

    Higher order duality in multiobjective fractional programming with support functions

    Get PDF
    AbstractIn this paper a new class of higher order (F,ρ,σ)-type I functions for a multiobjective programming problem is introduced, which subsumes several known studied classes. Higher order Mond–Weir and Schaible type dual programs are formulated for a nondifferentiable multiobjective fractional programming problem where the objective functions and the constraints contain support functions of compact convex sets in Rn. Weak and strong duality results are studied in both the cases assuming the involved functions to be higher order (F,ρ,σ)-type I. A number of previously studied problems appear as special cases

    Stochastic Programming with Probability

    Get PDF
    In this work we study optimization problems subject to a failure constraint. This constraint is expressed in terms of a condition that causes failure, representing a physical or technical breakdown. We formulate the problem in terms of a probability constraint, where the level of "confidence" is a modelling parameter and has the interpretation that the probability of failure should not exceed that level. Application of the stochastic Arrow-Hurwicz algorithm poses two difficulties: one is structural and arises from the lack of convexity of the probability constraint, and the other is the estimation of the gradient of the probability constraint. We develop two gradient estimators with decreasing bias via a convolution method and a finite difference technique, respectively, and we provide a full analysis of convergence of the algorithms. Convergence results are used to tune the parameters of the numerical algorithms in order to achieve best convergence rates, and numerical results are included via an example of application in finance

    On Quasi-Newton Forward--Backward Splitting: Proximal Calculus and Convergence

    Get PDF
    We introduce a framework for quasi-Newton forward--backward splitting algorithms (proximal quasi-Newton methods) with a metric induced by diagonal ±\pm rank-rr symmetric positive definite matrices. This special type of metric allows for a highly efficient evaluation of the proximal mapping. The key to this efficiency is a general proximal calculus in the new metric. By using duality, formulas are derived that relate the proximal mapping in a rank-rr modified metric to the original metric. We also describe efficient implementations of the proximity calculation for a large class of functions; the implementations exploit the piece-wise linear nature of the dual problem. Then, we apply these results to acceleration of composite convex minimization problems, which leads to elegant quasi-Newton methods for which we prove convergence. The algorithm is tested on several numerical examples and compared to a comprehensive list of alternatives in the literature. Our quasi-Newton splitting algorithm with the prescribed metric compares favorably against state-of-the-art. The algorithm has extensive applications including signal processing, sparse recovery, machine learning and classification to name a few.Comment: arXiv admin note: text overlap with arXiv:1206.115

    A note on higher-order nondifferentiable symmetric duality in multiobjective programming

    Get PDF
    AbstractIn this work, we establish a strong duality theorem for Mond–Weir type multiobjective higher-order nondifferentiable symmetric dual programs. This fills some gaps in the work of Chen [X. Chen, Higher-order symmetric duality in nondifferentiable multiobjective programming problems, J. Math. Anal. Appl. 290 (2004) 423–435]
    • 

    corecore