596 research outputs found

    GSOS for non-deterministic processes with quantitative aspects

    Get PDF
    Recently, some general frameworks have been proposed as unifying theories for processes combining non-determinism with quantitative aspects (such as probabilistic or stochastically timed executions), aiming to provide general results and tools. This paper provides two contributions in this respect. First, we present a general GSOS specification format (and a corresponding notion of bisimulation) for non-deterministic processes with quantitative aspects. These specifications define labelled transition systems according to the ULTraS model, an extension of the usual LTSs where the transition relation associates any source state and transition label with state reachability weight functions (like, e.g., probability distributions). This format, hence called Weight Function SOS (WFSOS), covers many known systems and their bisimulations (e.g. PEPA, TIPP, PCSP) and GSOS formats (e.g. GSOS, Weighted GSOS, Segala-GSOS, among others). The second contribution is a characterization of these systems as coalgebras of a class of functors, parametric on the weight structure. This result allows us to prove soundness of the WFSOS specification format, and that bisimilarities induced by these specifications are always congruences.Comment: In Proceedings QAPL 2014, arXiv:1406.156

    Structural operational semantics for non-deterministic processes with quantitative aspects

    Get PDF
    General frameworks have been recently proposed as unifying theories for processes combining non-determinism with quantitative aspects (such as probabilistic or stochastically timed executions), aiming to provide general results and tools. This paper provides two contributions in this respect. First, we present a general GSOS specification format and a corresponding notion of bisimulation for non-deterministic processes with quantitative aspects. These specifications define labelled transition systems according to the ULTraS model, an extension of the usual LTSs where the transition relation associates any source state and transition label with state reachability weight functions (like, e.g., probability distributions). This format, hence called Weight Function GSOS (WF-GSOS), covers many known systems and their bisimulations (e.g. PEPA, TIPP, PCSP) and GSOS formats (e.g. GSOS, Weighted GSOS, Segala-GSOS, among others). The second contribution is a characterization of these systems as coalgebras of a class of functors, parametric on the weight structure. This result allows us to prove soundness and completeness of the WF-GSOS specification format, and that bisimilarities induced by these specifications are always congruences.Comment: Extended version of arXiv:1406.206

    Bisimulation of Labelled State-to-Function Transition Systems Coalgebraically

    Get PDF
    Labeled state-to-function transition systems, FuTS for short, are characterized by transitions which relate states to functions of states over general semirings, equipped with a rich set of higher-order operators. As such, FuTS constitute a convenient modeling instrument to deal with process languages and their quantitative extensions in particular. In this paper, the notion of bisimulation induced by a FuTS is addressed from a coalgebraic point of view. A correspondence result is established stating that FuTS-bisimilarity coincides with behavioural equivalence of the associated functor. As generic examples, the equivalences underlying substantial fragments of major examples of quantitative process algebras are related to the bisimilarity of specific FuTS. The examples range from a stochastic process language, PEPA, to a language for Interactive Markov Chains, IML, a (discrete) timed process language, TPC, and a language for Markov Automata, MAL. The equivalences underlying these languages are related to the bisimilarity of their specific FuTS. By the correspondence result coalgebraic justification of the equivalences of these calculi is obtained. The specific selection of languages, besides covering a large variety of process interaction models and modelling choices involving quantities, allows us to show different classes of FuTS, namely so-called simple FuTS, combined FuTS, nested FuTS, and general FuTS

    On Zone-Based Analysis of Duration Probabilistic Automata

    Full text link
    We propose an extension of the zone-based algorithmics for analyzing timed automata to handle systems where timing uncertainty is considered as probabilistic rather than set-theoretic. We study duration probabilistic automata (DPA), expressing multiple parallel processes admitting memoryfull continuously-distributed durations. For this model we develop an extension of the zone-based forward reachability algorithm whose successor operator is a density transformer, thus providing a solution to verification and performance evaluation problems concerning acyclic DPA (or the bounded-horizon behavior of cyclic DPA).Comment: In Proceedings INFINITY 2010, arXiv:1010.611
    • …
    corecore