228 research outputs found

    Blind Carrier Phase Recovery for General 2{\pi}/M-rotationally Symmetric Constellations

    Full text link
    This paper introduces a novel blind carrier phase recovery estimator for general 2{\Pi}/M-rotationally symmetric constellations. This estimation method is a generalization of the non-data-aided (NDA) nonlinear Phase Metric Method (PMM) estimator already designed for general quadrature amplitude constellations. This unbiased estimator is seen here as a fourth order PMM then generalized to Mth order (Mth PMM) in such manner that it covers general 2{\Pi}/M-rotationally symmetric constellations such as PAM, QAM, PSK. Simulation results demonstrate the good performance of this Mth PMM estimation algorithm against competitive blind phase estimators already published for various modulation systems of practical interest.Comment: 14 pages, 12 figures, International Journal of Wireless & Mobile Networks (IJWMN

    Synchronization Techniques for Burst-Mode Continuous Phase Modulation

    Get PDF
    Synchronization is a critical operation in digital communication systems, which establishes and maintains an operational link between transmitter and the receiver. As the advancement of digital modulation and coding schemes continues, the synchronization task becomes more and more challenging since the new standards require high-throughput functionality at low signal-to-noise ratios (SNRs). In this work, we address feedforward synchronization of continuous phase modulations (CPMs) using data-aided (DA) methods, which are best suited for burst-mode communications. In our transmission model, a known training sequence is appended to the beginning of each burst, which is then affected by additive white Gaussian noise (AWGN), and unknown frequency, phase, and timing offsets. Based on our transmission model, we derive the Cramer-Rao bound (CRB) for DA joint estimation of synchronization parameters. Using the CRB expressions, the optimum training sequence for CPM signals is proposed. It is shown that the proposed sequence minimizes the CRB for all three synchronization parameters asymptotically, and can be applied to the entire CPM family. We take advantage of the simple structure of the optimized training sequence in order to design a practical synchronization algorithm based on the maximum likelihood (ML) principles. The proposed DA algorithm jointly estimates frequency offset, carrier phase and symbol timing in a feedforward manner. The frequency offset estimate is first found by means of maximizing a one dimensional function. It is then followed by symbol timing and carrier phase estimation, which are carried out using simple closed-form expressions. We show that the proposed algorithm attains the theoretical CRBs for all synchronization parameters for moderate training sequence lengths and all SNR regions. Moreover, a frame synchronization algorithm is developed, which detects the training sequence boundaries in burst-mode CPM signals. The proposed training sequence and synchronization algorithm are extended to shaped-offset quadrature phase-shift keying (SOQPSK) modulation, which is considered for next generation aeronautical telemetry systems. Here, it is shown that the optimized training sequence outperforms the one that is defined in the draft telemetry standard as long as estimation error variances are considered. The overall bit error rate (BER) plots suggest that the optimized preamble with a shorter length can be utilized such that the performance loss is less than 0.5 dB of an ideal synchronization scenario

    Carrier Recovery in burst-mode 16-QAM

    Get PDF
    Wireless communication systems such as multipoint communication systems (MCS) are becoming attractive as cost-effective means for providing network access in sparsely populated, rugged, or developing areas of the world. Since the radio spectrum is limited, it is desirable to use spectrally efficient modulation methods such as quadrature amplitude modulation (QAM) for high data rate channels. Many MCS employ time division multiple access (TDMA) and/or time division duplexing (TDD) techniques, in which transmissions operate in bursts. In many cases, a preamble of known symbols is appended to the beginning of each burst for carrier and symbol timing recovery (symbol timing is assumed known in this thesis). Preamble symbols consume bandwidth and power and are not used to convey information. In order for burst-mode communications to provide efficient data throughput, the synchronization time must be short compared to the user data portion of the burst. Traditional methods of communication system synchronization such as phase-locked loops (PLLs) have demonstrated reduced performance when operated in burst-mode systems. In this thesis, a feedforward (FF) digital carrier recovery technique to achieve rapid carrier synchronization is proposed. The estimation algorithms for determining carrier offsets in carrier acquisition and tracking in a linear channel environment corrupted by additive white Gaussian noise (AWGN) are described. The estimation algorithms are derived based on the theory of maximum likelihood (ML) parameter estimation. The estimations include data-aided (DA) carrier frequency and phase estimations in acquisition and non-data-aided (NDA) carrier phase estimation in tracking. The DA carrier frequency and phase estimation algorithms are based on oversampling of a known preamble. The NDA carrier phase estimation makes use of symbol timing knowledge and estimates are extracted from the random data portion of the burst. The algorithms have been simulated and tested using Matlab® to verify their functionalities. The performance of these estimators is also evaluated in the burst-mode operations for 16-QAM and compared in the presence of non-ideal conditions (frequency offset, phase offset, and AWGN). The simulation results show that the carrier recovery techniques presented in this thesis proved to be applicable to the modulation schemes of 16-QAM. The simulations demonstrate that the techniques provide a fast carrier acquisition using a short preamble (about 111 symbols) and are suitable for burst-mode communication systems

    Carrier Synchronization in High Bit-Rate Optical Transmission Systems

    Get PDF
    In this dissertation, design of optical transmission systems with differential detection and coherent detection is briefly described. More over, algorithms for carrier synchronization and phase estimation with their implementation in high bit-rate optical transmission systems are proposed

    New advances in synchronization of digital communication receivers

    Get PDF
    Synchronization is a challenging but very important task in communications. In digital communication systems, a hierarchy of synchronization problems has to be considered: carrier synchronization, symbol timing synchronization and frame synchronization. For bandwidth efficiency and burst transmission reasons, the former two synchronization steps tend to favor non-data aided (NDA or blind) techniques, while in general, the last one is usually solved by inserting repetitively known bits or words into the data sequence, and is referred to as a data-aided (DA) approach. Over the last two decades, extensive research work has been carried out to design nondata-aided timing recovery and carrier synchronization algorithms. Despite their importance and spread use, most of the existing blind synchronization algorithms are derived in an ad-hoc manner without exploiting optimally the entire available statistical information. In most cases their performance is evaluated by computer simulations, rigorous and complete performance analysis has not been performed yet. It turns out that a theoretical oriented approach is indispensable for studying the limit or bound of algorithms and comparing different methods. The main goal of this dissertation is to develop several novel signal processing frameworks that enable to analyze and improve the performance of the existing timing recovery and carrier synchronization algorithms. As byproducts of this analysis, unified methods for designing new computationally and statistically efficient (i.e., minimum variance estimators) blind feedforward synchronizers are developed. Our work consists of three tightly coupled research directions. First, a general and unified framework is proposed to develop optimal nonlinear least-squares (NLS) carrier recovery scheme for burst transmissions. A family of blind constellation-dependent optimal "matched" NLS carrier estimators is proposed for synchronization of burst transmissions fully modulated by PSK and QAM-constellations in additive white Gaussian noise channels. Second, a cyclostationary statistics based framework is proposed for designing computationally and statistically efficient robust blind symbol timing recovery for time-selective flat-fading channels. Lastly, dealing with the problem of frame synchronization, a simple and efficient data-aided approach is proposed for jointly estimating the frame boundary, the frequency-selective channel and the carrier frequency offset

    Overhead-optimization of pilot-based digital signal processing for flexible high spectral efficiency transmission

    Get PDF
    We present a low-complexity fully pilot-based digital signal processing (DSP) chain designed for high spectral efficiency optical transmission systems. We study the performance of the individual pilot algorithms in simulations before demonstrating transmission of a 51 724 Gbaud PM-64QAM superchannel over distances reaching 1000 km. We present an overhead optimization technique using the system achievable information rate to find the optimal balance between increased performance and throughput reduction from adding additional DSP pilots. Using the optimal overhead of 2.4%, we report 9.3 (8.3) bits/s/Hz spectral efficiency, or equivalently 11.9 (10.6) Tb/s superchannel throughput, after 480 (960) km of transmission over 80 km spans with EDFA-only amplification. Moreover, we show that the optimum overhead depends only weakly on transmission distance, concluding that back-to-back optimization is sufficient for all studied distances. Our results show that pilot-based DSP combined with overhead optimization can increase the robustness and performance of systems using advanced modulation formats while still maintaining state-of-the-art spectral efficiency and multi-Tb/s throughput
    • …
    corecore