406 research outputs found

    Dictionary optimization for representing sparse signals using Rank-One Atom Decomposition (ROAD)

    Get PDF
    Dictionary learning has attracted growing research interest during recent years. As it is a bilinear inverse problem, one typical way to address this problem is to iteratively alternate between two stages: sparse coding and dictionary update. The general principle of the alternating approach is to fix one variable and optimize the other one. Unfortunately, for the alternating method, an ill-conditioned dictionary in the training process may not only introduce numerical instability but also trap the overall training process towards a singular point. Moreover, it leads to difficulty in analyzing its convergence, and few dictionary learning algorithms have been proved to have global convergence. For the other bilinear inverse problems, such as short-and-sparse deconvolution (SaSD) and convolutional dictionary learning (CDL), the alternating method is still a popular choice. As these bilinear inverse problems are also ill-posed and complicated, they are tricky to handle. Additional inner iterative methods are usually required for both of the updating stages, which aggravates the difficulty of analyzing the convergence of the whole learning process. It is also challenging to determine the number of iterations for each stage, as over-tuning any stage will trap the whole process into a local minimum that is far from the ground truth. To mitigate the issues resulting from the alternating method, this thesis proposes a novel algorithm termed rank-one atom decomposition (ROAD), which intends to recast a bilinear inverse problem into an optimization problem with respect to a single variable, that is, a set of rank-one matrices. Therefore, the resulting algorithm is one stage, which minimizes the sparsity of the coefficients while keeping the data consistency constraint throughout the whole learning process. Inspired by recent advances in applying the alternating direction method of multipliers (ADMM) to nonconvex nonsmooth problems, an ADMM solver is adopted to address ROAD problems, and a lower bound of the penalty parameter is derived to guarantee a convergence in the augmented Lagrangian despite nonconvexity of the optimization formulation. Compared to two-stage dictionary learning methods, ROAD simplifies the learning process, eases the difficulty of analyzing convergence, and avoids the singular point issue. From a practical point of view, ROAD reduces the number of tuning parameters required in other benchmark algorithms. Numerical tests reveal that ROAD outperforms other benchmark algorithms in both synthetic data tests and single image super-resolution applications. In addition to dictionary learning, the ROAD formulation can also be extended to solve the SaSD and CDL problems. ROAD can still be employed to recast these problems into a one-variable optimization problem. Numerical tests illustrate that ROAD has better performance in estimating convolutional kernels compared to the latest SaSD and CDL algorithms.Open Acces

    Jump-sparse and sparse recovery using Potts functionals

    Full text link
    We recover jump-sparse and sparse signals from blurred incomplete data corrupted by (possibly non-Gaussian) noise using inverse Potts energy functionals. We obtain analytical results (existence of minimizers, complexity) on inverse Potts functionals and provide relations to sparsity problems. We then propose a new optimization method for these functionals which is based on dynamic programming and the alternating direction method of multipliers (ADMM). A series of experiments shows that the proposed method yields very satisfactory jump-sparse and sparse reconstructions, respectively. We highlight the capability of the method by comparing it with classical and recent approaches such as TV minimization (jump-sparse signals), orthogonal matching pursuit, iterative hard thresholding, and iteratively reweighted 1\ell^1 minimization (sparse signals)

    First order algorithms in variational image processing

    Get PDF
    Variational methods in imaging are nowadays developing towards a quite universal and flexible tool, allowing for highly successful approaches on tasks like denoising, deblurring, inpainting, segmentation, super-resolution, disparity, and optical flow estimation. The overall structure of such approaches is of the form D(Ku)+αR(u)minu{\cal D}(Ku) + \alpha {\cal R} (u) \rightarrow \min_u ; where the functional D{\cal D} is a data fidelity term also depending on some input data ff and measuring the deviation of KuKu from such and R{\cal R} is a regularization functional. Moreover KK is a (often linear) forward operator modeling the dependence of data on an underlying image, and α\alpha is a positive regularization parameter. While D{\cal D} is often smooth and (strictly) convex, the current practice almost exclusively uses nonsmooth regularization functionals. The majority of successful techniques is using nonsmooth and convex functionals like the total variation and generalizations thereof or 1\ell_1-norms of coefficients arising from scalar products with some frame system. The efficient solution of such variational problems in imaging demands for appropriate algorithms. Taking into account the specific structure as a sum of two very different terms to be minimized, splitting algorithms are a quite canonical choice. Consequently this field has revived the interest in techniques like operator splittings or augmented Lagrangians. Here we shall provide an overview of methods currently developed and recent results as well as some computational studies providing a comparison of different methods and also illustrating their success in applications.Comment: 60 pages, 33 figure

    A convex formulation for hyperspectral image superresolution via subspace-based regularization

    Full text link
    Hyperspectral remote sensing images (HSIs) usually have high spectral resolution and low spatial resolution. Conversely, multispectral images (MSIs) usually have low spectral and high spatial resolutions. The problem of inferring images which combine the high spectral and high spatial resolutions of HSIs and MSIs, respectively, is a data fusion problem that has been the focus of recent active research due to the increasing availability of HSIs and MSIs retrieved from the same geographical area. We formulate this problem as the minimization of a convex objective function containing two quadratic data-fitting terms and an edge-preserving regularizer. The data-fitting terms account for blur, different resolutions, and additive noise. The regularizer, a form of vector Total Variation, promotes piecewise-smooth solutions with discontinuities aligned across the hyperspectral bands. The downsampling operator accounting for the different spatial resolutions, the non-quadratic and non-smooth nature of the regularizer, and the very large size of the HSI to be estimated lead to a hard optimization problem. We deal with these difficulties by exploiting the fact that HSIs generally "live" in a low-dimensional subspace and by tailoring the Split Augmented Lagrangian Shrinkage Algorithm (SALSA), which is an instance of the Alternating Direction Method of Multipliers (ADMM), to this optimization problem, by means of a convenient variable splitting. The spatial blur and the spectral linear operators linked, respectively, with the HSI and MSI acquisition processes are also estimated, and we obtain an effective algorithm that outperforms the state-of-the-art, as illustrated in a series of experiments with simulated and real-life data.Comment: IEEE Trans. Geosci. Remote Sens., to be publishe

    Restoration of ultrasonic images using non-linear system identification and deconvolution

    Get PDF
    This paper studies a new ultrasound image restoration method based on a non-linear forward model. A Hammerstein polynomial-based non-linear image formation model is considered to identify the system impulse response in baseband and around the second harmonic. The identification process is followed by a joint deconvolution technique minimizing an appropriate cost function. This cost function is constructed from two data fidelity terms exploiting the linear and non-linear model components, penalized by an additive-norm regularization enforcing sparsity of the solution. An alternating optimization approach is considered to minimize the penalized cost function, allowing the tissue reflectivity function to be estimated. Results on synthetic ultrasound images are finally presented to evaluate the algorithm performance
    corecore