5 research outputs found

    Degrees of Computability and Randomness

    Get PDF

    Computability Theory

    Get PDF
    Computability is one of the fundamental notions of mathematics, trying to capture the effective content of mathematics. Starting from Gödel’s Incompleteness Theorem, it has now blossomed into a rich area with strong connections with other areas of mathematical logic as well as algebra and theoretical computer science

    Lowness and Π nullsets

    Get PDF
    We prove that there exists a noncomputable c.e. real which is low for weak 2-randomness, a definition of randomness due to Kurtz, and that all reals which are low for weak 2-randomness are low for Martin-Lof randomness

    Joins and Meets in the Partial Orders of the Computably Enumerable ibT- and cl-Degrees

    Get PDF
    A bounded reducibility is a preorder on the power set of the integers which is obtained from Turing reducibility by the additional requirement that, for a reduction of A to B, for every input x the oracle B is only asked oracle queries y < f(x)+1, where f is from some given set F of total computable functions. The most general example of a bounded reducibility is weak-truth-table reducibility, where F is just the set of all computable functions. In this thesis we study the so-called strongly bounded reducibilites, which are obtained by choosing F={id} and F={id+c: c constant}, respectively (where id is the identity function). We start by giving a machine-independent characterisation of these reducibilities, define the degree structures of the computably enumerable ibT- and cl-degrees and review some important properties of ibT- and cl-reducibility concerning strictly increasing computable functions (called shifts) and the permitting method. Then we turn to the degree structures mentioned above, and in particular to existence and nonexistence of joins and meets of a finite set of degrees. As Barmpalias and independently Fan and Lu have shown, these structures are not upper semi-lattices; it is also known that they are not lower semi-lattices. We extend these results by showing that the existence of a join or meet of n degrees does in general not imply the existence of a join or meet, respectively, of any subset containining more than one element of these degrees. We also show that even if deg(A) and deg(B) have a join, there is no uniform way to compute a member of this join from A and B, contrasting the join in the Turing degrees. We conclude this part by looking at the substructure which consists of the degrees of simple sets and show that this structure is not closed with respect to the join operation. This is the dual of a theorem of Ambos-Spies stating that the simple degrees are not closed with respect to meets. Next, we investigate lattice embeddings into the c.e. r-degrees. Due to an observation of Ambos-Spies, the proof that every finite distributive lattice can be embedded into the computably enumerable Turing degrees carries over to the c.e. r-degrees. We show that the smallest nondistributive lattices N5 and M3 can also be embedded, but only the N5 can be embedded preserving the least element. Since every nondistributive lattice contains at least one of these two lattices as a sublattice, this motivates the conjecture that every finite lattice can be embedded. We show this for two other nondistributive lattices, the S7 und S8. Finally, we compare the c.e. ibT- and c.e. cl-degrees and prove that these are not elementarily equivalent. To show this, we study under which conditions on two degrees a and c with a<c it holds that there exists a degree b<c such that c is the join of a and b. In this context we also show that, while shifts provide a simple method to produce a lesser r-degree a to some given noncomputable r-degree c, there is no computable shift which uniformly produces such an a with the additional property that no degree b as above exists
    corecore