772 research outputs found

    A Game-Theoretic Drone-as-a-Service Composition for Delivery

    Full text link
    We propose a novel game-theoretic approach for drone service composition considering recharging constraints. We design a non-cooperative game model for drone services. We propose a non-cooperative game algorithm for the selection and composition of optimal drone services. We conduct several experiments on a real drone dataset to demonstrate the efficiency of our proposed approach.Comment: 5 pages, 3 figures. This is an accepted paper and it is going to appear in the Proceedings of the 2020 IEEE International Conference on Web Services (IEEE ICWS 2020) affiliated with the 2020 IEEE World Congress on Services (IEEE SERVICES 2020), Beijing, Chin

    A Taxonomy of Workflow Management Systems for Grid Computing

    Full text link
    With the advent of Grid and application technologies, scientists and engineers are building more and more complex applications to manage and process large data sets, and execute scientific experiments on distributed resources. Such application scenarios require means for composing and executing complex workflows. Therefore, many efforts have been made towards the development of workflow management systems for Grid computing. In this paper, we propose a taxonomy that characterizes and classifies various approaches for building and executing workflows on Grids. We also survey several representative Grid workflow systems developed by various projects world-wide to demonstrate the comprehensiveness of the taxonomy. The taxonomy not only highlights the design and engineering similarities and differences of state-of-the-art in Grid workflow systems, but also identifies the areas that need further research.Comment: 29 pages, 15 figure

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs

    A service broker for Intercloud computing

    Get PDF
    This thesis aims at assisting users in finding the most suitable Cloud resources taking into account their functional and non-functional SLA requirements. A key feature of the work is a Cloud service broker acting as mediator between consumers and Clouds. The research involves the implementation and evaluation of two SLA-aware match-making algorithms by use of a simulation environment. The work investigates also the optimal deployment of Multi-Cloud workflows on Intercloud environments

    Combinatorial Auction-based Mechanisms for Composite Web Service Selection

    Get PDF
    Composite service selection presents the opportunity for the rapid development of complex applications using existing web services. It refers to the problem of selecting a set of web services from a large pool of available candidates to logically compose them to achieve value-added composite services. The aim of service selection is to choose the best set of services based on the functional and non-functional (quality related) requirements of a composite service requester. The current service selection approaches mostly assume that web services are offered as single independent entities; there is no possibility for bundling. Moreover, the current research has mainly focused on solving the problem for a single composite service. There is a limited research to date on how the presence of multiple requests for composite services affects the performance of service selection approaches. Addressing these two aspects can significantly enhance the application of composite service selection approaches in the real-world. We develop new approaches for the composite web service selection problem by addressing both the bundling and multiple requests issues. In particular, we propose two mechanisms based on combinatorial auction models, where the provisioning of multiple services are auctioned simultaneously and service providers can bid to offer combinations of web services. We mapped these mechanisms to Integer Linear Programing models and conducted extensive simulations to evaluate them. The results of our experimentation show that bundling can lead to cost reductions compared to when services are offered independently. Moreover, the simultaneous consideration of a set of requests enhances the success rate of the mechanism in allocating services to requests. By considering all composite service requests at the same time, the mechanism achieves more homogenous prices which can be a determining factor for the service requester in choosing the best composite service selection mechanism to deploy

    Dynamic Formation and Strategic Management of Web Services Communities

    Get PDF
    In the last few years, communities of services have been studied in a certain numbers of proposals as virtual pockets of similar expertise. The motivation is to provide these services with high chance of discovery through better visibility, and to enhance their capabilities when it comes to provide requested functionalities. There are some proposed mechanisms and models on aggregating web services and making them cooperate within their communities. However, forming optimal and stable communities as coalitions to maximize individual and group efficiency and income for all the involved parties has not been addressed yet. Moreover, in the proposed frameworks of these communities, a common assumption is that residing services, which are supposed to be autonomous and intelligent, are competing over received requests. However, those services can also exhibit cooperative behaviors, for instance in terms of substituting each other. When competitive and cooperative behaviors and strategies are combined, autonomous services are said to be "coopetitive". Deciding to compete or cooperate inside communities is a problem yet to be investigated. In this thesis, we first identify the problem of defining efficient algorithms for coalition formation mechanisms. We study the community formation problem in two different settings: 1) communities with centralized manager having complete information using cooperative game-theoretic techniques; and 2) communities with distributed decision making mechanisms having incomplete information using training methods. We propose mechanisms for community membership requests and selections of web services in the scenarios where there is interaction between one community and many web services and scenarios where web services can join multiple established communities. Then in order to address the coopetitive relation within communities of web services, we propose a decision making mechanism for our web services to efficiently choose competition or cooperation strategies to maximize their payoffs. We prove that the proposed decision mechanism is efficient and can be implemented in time linear in the length of the time period considered for the analysis and the number of services in the community. Moreover, we conduct extensive simulations, analyze various scenarios, and confirm the obtained theoretical results using parameters from a real web services dataset
    • …
    corecore