1,300 research outputs found

    Review on electrical impedance tomography: Artificial intelligence methods and its applications

    Full text link
    © 2019 by the authors. Electrical impedance tomography (EIT) has been a hot topic among researchers for the last 30 years. It is a new imaging method and has evolved over the last few decades. By injecting a small amount of current, the electrical properties of tissues are determined and measurements of the resulting voltages are taken. By using a reconstructing algorithm these voltages then transformed into a tomographic image. EIT contains no identified threats and as compared to magnetic resonance imaging (MRI) and computed tomography (CT) scans (imaging techniques), it is cheaper in cost as well. In this paper, a comprehensive review of efforts and advancements undertaken and achieved in recent work to improve this technology and the role of artificial intelligence to solve this non-linear, ill-posed problem are presented. In addition, a review of EIT clinical based applications has also been presented

    Tissue Ischemia Monitoring Using Impedance Spectroscopy: Clinical Evaluation

    Get PDF
    Ischemia is a condition of decreased tissue viability caused by a lack of perfusion, which prevents the delivery of oxygen and nutrients to biological tissue. Ischemia plays a major role in many clinical disorders, yet there are limited means by which tissue viability can be assessed. The long-term objective of this research is to develop a non-invasive or non-contact instrument for quantifying human tissue ischemia. Skeletal muscle ischemia is evaluated at this stage because skeletal muscle is easily accessible, its ischemia represents a clinical problem, and it can endure short periods of ischemia without suffering permanent injury. The ischemia monitor designed for this study is based on impedance spectroscopy, the measurement of tissue impedance at various frequencies. This study had three major goals. The first goal was to improve upon the design of the ischemia monitor to achieve optimal system performance in a clinical environment. Major considerations included electrode sterility, instrument mobility, and electrosurgical unit interference. The second goal was to collect both impedance and pH data from human subjects undergoing tourniquet surgeries, which induce skeletal muscle ischemia and result in changes of the tissue\u27s pH and impedance. The average in recorded pH during ischemia was 0.0053 pH units/minute and the average change in Ro was -0.1481 Ohms/minute. The third goal was to develop a relationship between parameters of tissue impedance and pH utilizing neural networks. This goal was accomplished in three stages. First, the optimal neural network type for classifying impedance data and pH values was determined. Based on these results, the backpropagation neural network was utilized for all subsequent work. Then, the input parameters of the neural network were optimized using previously collected data. The number of inputs to the previously developed neural network were reduced by 35% (13/20) with a maximum of a 3% reduction in neural network performance. Finally, the neural network was trained and tested using human impedance and pH data. The network was able to correctly estimate tissue pH values with an average error of 0.0440 pH units. Through the course of this research the ischemia monitor based on impedance spectroscopy was improved, a methodology for the use of the instrument in the operating room was developed, and a preliminary relationship between parameters of impedance spectra and pH was established. The results of this research indicate the feasibility of the instrument to monitor both pH and impedance in a clinical setting. Additionally, it was demonstrated that impedance data collected non-invasively could be used to estimate the pH and level of ischemia in human skeletal muscle

    Health Condition Assessment of Multi-Chip IGBT Module with Magnetic Flux Density

    Get PDF
    To achieve efficient conversion and flexible control of electronic energy, insulated gate bipolar transistor (IGBT) power modules as the dominant power semiconductor devices are increasingly applied in many areas such as electric drives, hybrid electric vehicles, railways, and renewable energy systems. It is known that IGBTs are the most vulnerable components in power converter systems. To achieve high power density and high current capability, several IGBT chips are connected in parallel as a multi-chip IGBT module, which makes the power modules less reliable due to a more complex structure. The lowered reliability of IGBT modules will not only cause safety problems but also increase operation costs due to the failure of IGBT modules. Therefore, the reliability of IGBTs is important for the overall system, especially in high power applications. To improve the reliability of IGBT modules, this thesis proposes a new health state assessment model with a more sensitive precursor parameter for multi-chip IGBT module that allows for condition-based maintenance and replacement prior to complete failure. Accurate health condition monitoring depends on the knowledge of failure mechanism and the selection of highly sensitive failure precursor. IGBT modules normally wear out and fail due to thermal cycling and operating environment. To enhance the understanding of the failure mechanism and the external characteristic performance of multi-chip IGBT modules, an electro-thermal finite element model (FEM) of a multi-chip IGBT module used in wind turbine converter systems was established with considerations for temperature dependence of material property, the thermal coupling effect between components, and the heat transfer process. The electro-thermal FEM accurately performed temperature distribution and the distribution electrical characteristic parameters during chip solder degradation. This study found an increased junction temperature, large change of temperature distribution, and more serious imbalanced current sharing during a single chip solder aging, thereby accelerating the aging of the whole IGBT module. According to the change of thermal and electrical parameters with chip solder fatigue, the sensitivity of fatigue sensitive parameters (FSPs) was analyzed. The collector current of the aging chip showed the highest sensitivity with the chip solder degradation compared with the junction temperature, case temperature, and collector-emitter voltage. However, the current distribution of internal components remains inaccessible through direct measurements or visual inspection due to the package. As the relationship between the current and magnetic field has been studied and gradually applied in sensor technologies, magnetic flux density was proposed instead of collector current as a new precursor for health condition monitoring. Magnetic flux density distribution was extracted by an electro-thermal-magnetic FEM of the multi-chip IGBT module based on electromagnetic theory. Simulation results showed that magnetic flux density had even higher sensitivity than collector current with chip solder degradation. In addition, the magnetic flux density was only related with the current and was not influenced by temperature, which suggested good selectivity. Therefore, the magnetic flux density was selected as the precursor due to its better sensitivity, selectivity, and generality. Finally, a health state assessment model based on backpropagation neural network (BPNN) was established according to the selected precursor. To localize and evaluate chip solder degradation, the health state of the IGBT module was determined by the magnetic flux density for each chip and the corresponding operating conduction current. BPNN featured good self-learning, self-adapting, robustness and generalization ability to deal with the nonlinear relationship between the four inputs and health state. Experimental results showed that the proposed model was accurate and effective. The health status of the IGBT modules was effectively recognized with an overall recognition rate of 99.8%. Therefore, the health state assessment model built in this thesis can accurately evaluate current health state of the IGBT module and support condition-based maintenance of the IGBT module

    Modelling the effects of ephaptic coupling on selectivity and response patterns during artificial stimulation of peripheral nerves

    Get PDF
    Artificial electrical stimulation of peripheral nerves for sensory feedback restoration can greatly benefit from computational models for simulation-based neural implant design in order to reduce the trial-and-error approach usually taken, thus potentially significantly reducing research and development costs and time. To this end, we built a computational model of a peripheral nerve trunk in which the interstitial space between the fibers and the tissues was modelled using a resistor network, thus enabling distance-dependent ephaptic coupling between myelinated axons and between fascicles as well. We used the model to simulate a) the stimulation of a nerve trunk model with a cuff electrode, and b) the propagation of action potentials along the axons. Results were used to investigate the effect of ephaptic interactions on recruitment and selectivity stemming from artificial (i.e., neural implant) stimulation and on the relative timing between action potentials during propagation. Ephaptic coupling was found to increase the number of fibers that are activated by artificial stimulation, thus reducing the artificial currents required for axonal recruitment, and it was found to reduce and shift the range of optimal stimulation amplitudes for maximum inter-fascicular selectivity. During propagation, while fibers of similar diameters tended to lock their action potentials and reduce their conduction velocities, as expected from previous knowledge on bundles of identical axons, the presence of many other fibers of different diameters was found to make their interactions weaker and unstable

    Neuro-fuzzy modeling of multi-field surface neuroprostheses for hand grasp

    Get PDF
    154 p.Las neuroprótesis aplican pulsos eléctricos a los nervios periféricos con el objetivo de sustituir funciones motrices/sensoriales perdidas, dando asistencia e influyendo positivamente en la rehabilitación motriz de personas con disfunciones motrices causadas por trastornos neurológicos. La complejidad de la neuroanatomía del antebrazo y la mano, su dimensionalidad, las diversas tareas no-cíclicas, la variabilidad de movimientos entre sujetos y la reducida selectividad de las neuroprótesis superficiales, ha dado lugar al diseño de un número reducido de neuroprótesis orientadas a agarres básicos. La posibilidad de hacer más selectiva la estimulación mediante los electrodos multi-campo, junto con el conocimiento sobre la incomodidad y los movimientos que genera la aplicación de la estimulación eléctrica funcional (FES por sus siglas en inglés) en miembro superior, podrían ser base fundamental para el desarrollo de neuroprótesis de agarre más avanzadas. La presente tesis describe un análisis de incomodidad como resultado de FES en el miembro superior, y propone modelos neuro-difusos para neuroprótesis de agarre tanto para personas sanas como para personas con trastornos neurológicos. El conocimiento generado respecto a la incomodidad puede ser utilizado como guía para desarrollar aplicaciones de FES de miembro superior más cómodas. Del mismo modo, los modelos propuestos en esta tesis pueden ser utilizados para apoyar el diseño y la validación de sistemas de control avanzados en neuroprótesis dirigidas a la función de agarre.Tecnalia; Intelligent Control Research Grou

    High Fidelity Bioelectric Modelling of the Implanted Cochlea

    Get PDF
    Cochlear implants are medical devices that can restore sound perception in individuals with sensorineural hearing loss (SHL). Since their inception, improvements in performance have largely been driven by advances in signal processing, but progress has plateaued for almost a decade. This suggests that there is a bottleneck at the electrode-tissue interface, which is responsible for enacting the biophysical changes that govern neuronal recruitment. Understanding this interface is difficult because the cochlea is small, intricate, and difficult to access. As such, researchers have turned to modelling techniques to provide new insights. The state-of-the-art involves calculating the electric field using a volume conduction model of the implanted cochlea and coupling it with a neural excitation model to predict the response. However, many models are unable to predict patient outcomes consistently. This thesis aims to improve the reliability of these models by creating high fidelity reconstructions of the inner ear and critically assessing the validity of the underlying and hitherto untested assumptions. Regarding boundary conditions, the evidence suggests that the unmodelled monopolar return path should be accounted for, perhaps by applying a voltage offset at a boundary surface. Regarding vasculature, the models show that large modiolar vessels like the vein of the scala tympani have a strong local effect near the stimulating electrode. Finally, it appears that the oft-cited quasi-static assumption is not valid due to the high permittivity of neural tissue. It is hoped that the study improves the trustworthiness of all bioelectric models of the cochlea, either by validating the claims of existing models, or by prompting improvements in future work. Developing our understanding of the underlying physics will pave the way for advancing future electrode array designs as well as patient-specific simulations, ultimately improving the quality of life for those with SHL

    Transient bioimpedance monitoring of mechanotransduction in artificial tissue during indentation

    Get PDF
    Mechanotransduction is of fundamental importance in cell physiology, facilitating sensing in touch and hearing as well as tissue development and wound healing. This study used an impedance sensor to monitor the effective resistance and permittivity of artificial tissues, alginate hydrogel with encapsulated fibroblasts, which were kept viable through the use of a bespoke microfluidic system. The observed transient impedance responses upon the application of identical compressive normal loads differed between acellular hydrogels and hydrogels in which fibroblasts were encapsulated. These differences resulted from changes in the conductivity and permeability of the hydrogel due to the presence of the encapsulated fibroblasts, and transient changes in ion concentrations due to mechanotransduction effects
    corecore