287 research outputs found

    Dissipative Systems Theory

    Get PDF
    In this chapter the general theory of dissipative systems is treated, laying much of the foundation for subsequent chapters

    Compositional Synthesis of Control Barrier Certificates for Networks of Stochastic Systems against ω\omega-Regular Specifications

    Full text link
    This paper is concerned with a compositional scheme for the construction of control barrier certificates for interconnected discrete-time stochastic systems. The main objective is to synthesize switching control policies against ω\omega-regular properties that can be described by accepting languages of deterministic Streett automata (DSA) along with providing probabilistic guarantees for the satisfaction of such specifications. The proposed framework leverages the interconnection topology and a notion of so-called control sub-barrier certificates of subsystems, which are used to compositionally construct control barrier certificates of interconnected systems by imposing some dissipativity-type compositionality conditions. We propose a systematic approach to decompose high-level ω\omega-regular specifications into simpler tasks by utilizing the automata corresponding to the complement of specifications. In addition, we formulate an alternating direction method of multipliers (ADMM) optimization problem in order to obtain suitable control sub-barrier certificates of subsystems while satisfying compositionality conditions. We also provide a sum-of-squares (SOS) optimization problem for the computation of control sub-barrier certificates and local control policies of subsystems. Finally, we demonstrate the effectiveness of our proposed approaches by applying them to a physical case study

    Control Law Design for Distributed Multi-Agent Systems

    Get PDF
    In this paper, the problem of control law design for decentralized homogenous Multi-Agent systems ensuring the global stability and global performance properties is considered. Inspired by the decentralized control law design methodology using the dissipativity input-output approach, the problem is reduced to the problem of satisfying two conditions: (i) the condition on the interconnection and (ii) the condition on the local agent dynamics. Both problems are e fficiently solved applying a (quasi-) convex optimization under Linear Matrix Inequality (LMI) constraints and an H infinity synthesis. The proposed design methodology is applied to the control law design of a synchronous PLLs network
    • …
    corecore