883 research outputs found

    Rigorous analysis of internal resonances in 3-D hybrid FE-BIE formulations by means of the Poincaré-Steklov operator

    Get PDF
    3-D hybrid finite-element (FE) boundary integral equation (BIE) formulations are widely used because of their ability to simulate large inhomogeneous structures in both open and bounded simulation domains by applying each method where it is the most efficient. However, some formulations suffer from breakdown frequencies at which the solution is not uniquely defined and errors are introduced due to internal resonances. In this paper, we investigate the occurrence of spurious solutions resulting from these resonances by using the concept of the Poincare-Steklov or Dirichlet-to-Neumann operator, which provides a relation between the tangential electric field and the electric current on the boundary of a domain. By identifying this operator in both the FE and BIE method, several new properties of internal resonances in 3-D hybrid FE-BIE formulations are easily derived. Several conformal and nonconformal formulations are studied and the theory is then applied to a scattering problem

    Advanced techniques in scientific computing: application to electromagnetics

    Get PDF
    Mención Internacional en el título de doctorDurante los últimos años, los componentes de radiofrecuencia que forman parte de un sistema de comunicaciones necesitan simulaciones cada vez más exigentes desde el punto de vista de recursos computacionales. Para ello, se han desarrollado diferentes técnicas con el método de los elementos finitos (FEM) como la conocida como adaptatividad hp, que consiste en estimar el error en el problema electromagnético para generar mallas de elementos adecuadas al problema que obtienen una aproximación de forma más efectiva que las mallas estándar; o métodos de descomposición de dominios (DDM), basado en la división del problema original en problemas más pequeños que se pueden resolver en paralelo. El principal problema de las técnicas de adaptatividad es que ofrecen buenas prestaciones para problemas bidimensionales, mientras que en tres dimensiones el tiempo de generación de las mallas adaptadas es prohibitivo. Por otra parte, DDM se ha utilizado satisfactoriamente para la simulación de problemas eléctricamente muy grandes y de gran complejidad, convirtiéndose en uno de los temas más actuales en la comunidad de electromagnetismo computacional. El principal objetivo de este trabajo es estudiar la viabilidad de algoritmos escalables (en términos de paralelización) combinando DDM no conformes y adaptatividad automática en tres dimensiones. Esto permitir ía la ejecución de algoritmos de adaptatividad independiente en cada subdominio de DDM. En este trabajo se presenta y discute un prototipo que combina técnicas de adaptatividad y DDM, que aún no se han tratado en detalle en la comunidad científica. Para ello, se implementan tres bloques fundamentales: i) funciones de base para los elementos finitos que permitan órdenes variables dentro de la misma malla; ii) DDM no conforme y sin solapamiento; y iii) algoritmos de adaptatividad en tres dimensiones. Estos tres bloques se han implementado satisfactoriamente en un código FEM mediante un método sistemático basado en el método de las soluciones manufacturadas (MMS). Además, se ha llevado a cabo una paralelización a tres niveles: a nivel de algoritmo, con DDM; a nivel de proceso, con MPI (Message Passing Interface); y a nivel de hebra, con OpenMP; todo en un código modular que facilita el mantenimiento y la introducción de nuevas características. Con respecto al primer bloque fundamental, se ha desarrollado una familia de funciones base con un enfoque sistemático que permite la expansión correcta del espacio de funciones. Por otra parte, se han introducido funciones de base jerárquicas de otros autores (con los que el grupo al que pertenece el autor de la tesis ha colaborado estrechamente en los últimos años) para facilitar la introducción de diferentes órdenes de aproximación en el mismo mallado. En lo relativo a DDM, se ha realizado un estudio cuantitativo del error generado por las disconformidades en la interfaz entre subdominios, incluidas las discontinuidades generadas por un algoritmo de adaptatividad. Este estudio es fundamental para el correcto funcionamiento de la adaptatividad, y no ha sido evaluado con detalle en la comunidad científica. Además, se ha desarrollado un algoritmo de adaptatividad con prismas triangulares, haciendo especial énfasis en las peculiaridades debidas a la elección de este elemento. Finalmente, estos tres bloques básicos se han utilizado para desarrollar, y discutir, un prototipo que une las técnicas de adaptatividad y DDM.In the last years, more and more accurate and demanding simulations of radiofrequency components in a system of communications are requested by the community. To address this need, some techniques have been introduced in finite element methods (FEM), such as hp adaptivity (which estimates the error in the problem and generates tailored meshes to achieve more accuracy with less unknowns than in the case of uniformly refined meshes) or domain decomposition methods (DDM, consisting of dividing the whole problem into more manageable subdomains which can be solved in parallel). The performance of the adaptivity techniques is good up to two dimensions, whereas for three dimensions the generation time of the adapted meshes may be prohibitive. On the other hand, large scale simulations have been reported with DDM becoming a hot topic in the computational electromagnetics community. The main objective of this dissertation is to study the viability of scalable (in terms of parallel performance) algorithms combining nonconformal DDM and automatic adaptivity in three dimensions. Specifically, the adaptivity algorithms might be run in each subdomain independently. This combination has not been detailed in the literature and a proof of concept is discussed in this work. Thus, three building blocks must be introduced: i) basis functions for the finite elements which support non-uniform approximation orders p; ii) non-conformal and non-overlapping DDM; and iii) adaptivity algorithms in 3D. In this work, these three building blocks have been successfully introduced in a FEM code with a systematic procedure based on the method of manufactured solutions (MMS). Moreover, a three-level parallelization (at the algorithm level, with DDM; at the process level, with message passing interface (MPI), and at the thread level, with OpenMP) has been developed using the paradigm of modular programming which eases the software maintenance and the introduction of new features. Regarding first building block, a family of basis functions which follows a sound mathematical approach to expand the correct space of functions is developed and particularized for triangular prisms. Also, to ease the introduction of different approximation orders in the same mesh, hierarchical basis functions from other authors are used as a black box. With respect to DDM, a thorough study of the error introduced by the non-conformal interfaces between subdomains is required for the adaptivity algorithm. Thus, a quantitative analysis is detailed including non-conformalities generated by independent refinements in neighbor subdomains. This error has not been assessed with detail in the literature and it is a key factor for the adaptivity algorithm to perform properly. An adaptivity algorithm with triangular prisms is also developed and special considerations for the implementation are explained. Finally, on top of these three building blocks, the proof of concept of adaptivity with DDM is discussed.Programa Oficial de Doctorado en Multimedia y ComunicacionesPresidente: Daniel Segovia Vargas.- Secretario: David Pardo Zubiaur.- Vocal: Romanus Dyczij-Edlinge

    A Coupled Hybridizable Discontinuous Galerkin and Boundary Integral Method for Analyzing Electromagnetic Scattering

    Full text link
    A coupled hybridizable discontinuous Galerkin (HDG) and boundary integral (BI) method is proposed to efficiently analyze electromagnetic scattering from inhomogeneous/composite objects. The coupling between the HDG and the BI equations is realized using the numerical flux operating on the equivalent current and the global unknown of the HDG. This approach yields sparse coupling matrices upon discretization. Inclusion of the BI equation ensures that the only error in enforcing the radiation conditions is the discretization. However, the discretization of this equation yields a dense matrix, which prohibits the use of a direct matrix solver on the overall coupled system as often done with traditional HDG schemes. To overcome this bottleneck, a "hybrid" method is developed. This method uses an iterative scheme to solve the overall coupled system but within the matrix-vector multiplication subroutine of the iterations, the inverse of the HDG matrix is efficiently accounted for using a sparse direct matrix solver. The same subroutine also uses the multilevel fast multipole algorithm to accelerate the multiplication of the guess vector with the dense BI matrix. The numerical results demonstrate the accuracy, the efficiency, and the applicability of the proposed HDG-BI solver

    Conformal electromagnetic wave propagation using primal mimetic finite elements

    Get PDF
    Elektromagnetische Wellenausbreitung bildet die physikalische Grundlage für unzählige Anwendungen in verschiedenen Bereichen der heutigen Welt. Um räumliche Szenarien zu modellieren, muss der kontinuierliche Raum in geeigneter Weise in ein Rechengebiet umgewandelt werden. Üblich diskretisierte Modelle – welche auf verschiedenen Größen beruhen – berücksichtigen die Beziehungen zwischen Feldvariablen mittels Relationen, welche durch partielle Differentialgleichungen repräsentiert werden. Um mathematische Beziehungen zwischen abhängigen Variablen in zweckdienlicher Art nachzubilden, schaffen hyperkomplexe Zahlensysteme ein passendes alternatives Rahmenwerk. Dieser Ansatz bezweckt das Einbinden bestimmter Systemeigenschaften und umfasst zusätzlich zur Modellierung von Feldproblemen, bei denen alle Variablen vorkommen, auch vereinfachte Modelle. Um eine wettbewerbsfähige Alternative zur üblichen numerischen Behandlung elektromagnetischer Felder in beobachtungsorientierter Weise darzubieten, wird das elektrische und magnetische Feld elektromagnetischer Wellenfelder als eine zusammengefasste Feldgröße, eingebettet im Funktionenraum, verstanden. Dieses Vorgehen ist intuitiv, da beide Felder in der Elektrodynamik gemeinsam auftreten und direkt messbar sind. Der Schwerpunkt dieser Arbeit ist in zwei Ziele untergliedert. Auf der einen Seite wird ein umformuliertes Maxwell-System in einer metrikfreien Umgebung mittels dem sogenannten „bikomplexen Ansatz“ umfassend untersucht. Auf der anderen Seite wird eine mögliche numerische Implementierung hinsichtlich der Finite-Elemente-Methode auf modernem Wege durch Nutzung der diskreten äußeren Analysis mit Fokus auf Genauigkeitsbelange bewertet. Hinsichtlich der numerischen Genauigkeitsbewertung wird demonstriert, dass der vorgelegte Ansatz grundsätzlich eine höhere Exaktheit zeigt, wenn man ihn mit Formulierungen vergleicht, welche auf der Helmholtz-Gleichung beruhen. Diese Dissertation trägt eine generalisierte hyperkomplexe alternative Darstellung von gewöhnlichen elektrodynamischen Ausdrucksweisen zum Themengebiet der Wellenausbreitung bei. Durch die Nutzung einer direkten Formulierung des elektrischen Feldes in Verbindung mit dem magnetischen Feld wird die Rechengenauigkeit von Randwertproblemen erhöht. Um diese Genauigkeitserhöhung zu erreichen, wird eine geeignete Erweiterung der de Rham-Kohomologie unterbreitet.Electromagnetic wave propagation provides the physical basis for countless applications in various subjects of today’s world. In order to model spatial scenarios, the continuous space must be converted to an appropriate computational domain. Ordinarily discretized models – which are based on distinct quantities – consider the connection between field variables by relations which are represented by partial differential equations. To reproduce mathematical relationships between dependent variables in a convenient manner, hypercomplex number systems build a suitable alternative framework. This approach aims to incorporate certain system properties and covers, in addition to the modeling of field problems where all variables are present, also simplified models. To provide a competitive alternative to the ordinary numerical handling of electromagnetic fields in an observation-based way, the electric and magnetic field of electromagnetic wave fields is understood as only one combined field variable embedded in the function space. This procedure is intuitive since both fields occur together in electrodynamics and are directly measureable. The focus of this thesis is twofold. On the one side, a reformulated Maxwell system is broadly investigated in a metric-free environment by the use of the so-called ”bicomplex approach”. On the other side, a possible numerical implementation concerning the Finite Element Method is evaluated in a modern way by the use of discrete exterior calculus with focus on accuracy matters. Regarding the numerical accuracy evaluation, it is demonstrated that the presented approach yields a higher exactness in general when comparing it to formulations which are based on the Helmholtz equation. This thesis contributes generalized hypercomplex alternative representations of ordinary electrodynamic expressions to the topic of wave propagation. By the use of a direct formulation of the electric field in conjunction with the magnetic field, the computational accuracy of boundary value problems is improved. In order to achieve this increase of accuracy, an appropriate enhancement of the de Rham cohomology is proposed

    International Workshop on Finite Elements for Microwave Engineering

    Get PDF
    When Courant prepared the text of his 1942 address to the American Mathematical Society for publication, he added a two-page Appendix to illustrate how the variational methods first described by Lord Rayleigh could be put to wider use in potential theory. Choosing piecewise-linear approximants on a set of triangles which he called elements, he dashed off a couple of two-dimensional examples and the finite element method was born. … Finite element activity in electrical engineering began in earnest about 1968-1969. A paper on waveguide analysis was published in Alta Frequenza in early 1969, giving the details of a finite element formulation of the classical hollow waveguide problem. It was followed by a rapid succession of papers on magnetic fields in saturable materials, dielectric loaded waveguides, and other well-known boundary value problems of electromagnetics. … In the decade of the eighties, finite element methods spread quickly. In several technical areas, they assumed a dominant role in field problems. P.P. Silvester, San Miniato (PI), Italy, 1992 Early in the nineties the International Workshop on Finite Elements for Microwave Engineering started. This volume contains the history of the Workshop and the Proceedings of the 13th edition, Florence (Italy), 2016 . The 14th Workshop will be in Cartagena (Colombia), 2018

    Advanced discontinuous integral-equation schemes for the versatile electromagnetic analysis of complex structures

    Get PDF
    Premi Extraordinari de Doctorat, promoció 2018-2019. Àmbit de les TICLes Equacions Integrals superficials més importants són l'Equació de Camp Elèctric (EFIE), per a l'anàlisi de la dispersió electromagnètica d'objectes conductors perfectes (PEC), i la formulació Poggio–Miller–Chang–Harrington–Wu–Tsai (PMCHWT), orientada a l'anàlisi d'objectes homogenis penetrables. Ambdues són normalment discretitzades, amb el Mètode dels Moments (MoM), amb funcions base div-conformes, dependents de les arestes del mallat. Les discretitzacions div-conformes de les formulacions EFIE i PMCHWT representen esquemes conformes; és a dir, amb solucions convergents a dins de l'espai físic de corrents. Tanmateix, les implementations MoM div-conformes requereixen que el mallat sigui conforme geomètricament, amb cada parell de triangles adjacents compartint només una aresta. El desenvolupament d'esquemes div-conformes per a objectes compostos amb línies al llarg de les quals tres o més regions hi intersecten, esdevé molt incòmoda perquè cal definir condicions de continuïtat especials en aquestes línies d'intersecció. A més, els mallats que resulten de la juxtaposició de subdominis independentment mallats són típicament no-conformes geomètricament i per tant no aptes per a l'anàlisi div-conforme convencional en Mètode dels Moments. En aquesta Tesi, es tracta l'anàlisi robusta, precisa i versàtil de la dispersió electromagnètica d'objectes conductors o penetrables amb forma arbitrària i d'objectes compostos amb línies d'intersecció entre differents regions, ja sigui amb mallats conformes com no-conformes. Amb aquest objectiu, fem ús de la formulació d'equació integral EFIE–PMCHWT, la qual resulta de l'aplicació de les formulacions EFIE o PMCHWTal llarg de superfícies de contorn, respectivament, incloent regions conductores o separant regions penetrables. Els esquemes proposats en aquesta Tesi es basen en el desenvolupament dels corrents amb conjunts de funcions base discontínues a través de les arestes del mallat i dependents només dels triangles del mallat. Aquesta estratègia dóna lloc a integrals de contorn amb Kernels hypersingulars, que maneguem mitjançant el testeig de les equacions amb funcions de testeig especialment dissenyades, definides fora de les triangulacions de la superfície de contorn, a dins de la regió a on els camps són zero d'acord amb al Teorema d'Equivalència superficial. Les nostres implementacions de la formulació EFIE-PMCHWT, dependents només de triangles, mostren millor precisió respecte dels esquemes continus convencionals en l'anàlisi d'objectes angulosos a on el modelatge acurat del comportament dels camps singulars és d'importància cabdal. A més, els nostres esquemes mostren en general una gran flexibilitat en l'anàlisi d'objectes compostos amb línies d'intersecció entre regions ja que no hi cal el modelatge especial dels corrents. Finalment, les implementacions proposades poden abordar l'anàlisi d'objectes amb forma arbitrària, totalment homogenis o homogenis a trossos, i amb mallats geomètricament no-conformes.The most prominent surface integral equations, the electric field integral equation (EFIE) used for the scattering analysis of perfectly electrically conducting (PEC) targets and the Poggio–Miller–Chang–Harrington–Wu–Tsai (PMCHWT) formulation commonly utilized for the analysis of homogeneous penetrable objects, are usually discretized, in the context of method of moments (MoM), with edge-based divergence-conforming basis functions. Divergence-conforming discretizations of the EFIE and PMCHWT formulations excel asconforming schemes, hence with converging solutions in the physical space of currents. However, the divergence-conforming MoM implementations require the underlying mesh to be geometrically conformal, with pairs of adjacent facets sharing a single edge. Thedevelopment of divergence-conforming schemes for composite objects with junctions, viz.boundary lines where more than two regions intersect, becomes somewhat awkward because of the definition of special continuity conditions at junctions. Moreover, the meshes arising from the juxtaposition of independently meshed subdomains in the modular design of complex objects are typically nonconformal and thus not suitable for conventional divergence-conforming MoM schemes. In this thesis, we address the robust, accurate and versatile scattering analysis of PEC and penetrable objects with arbitrary shape and composite objects with junctions meshed with conformal or nonconformal meshes. For this purpose, we employ the EFIE–PMCHWT integral-equation formulation, which follows from the application of the EFIE or PMCHWT formulations over boundary surfaces, respectively, enclosing PEC regions or separating penetrable regions. The proposed schemes rely on the expansion of the corrents with the facet-based, discontinuous-across-edges basis functions. This choice gives rise to boundary integrals with hypersingular kernels, which we handle by testing the equations with well-suited testing functions defined off the boundary tessellation, inside the region where, in light of the surface equivalence principle, the fields must be zero. Our facet-based EFIE-PMCHWT implementations exhibit improved accuracy when compared with the conventional continuous schemes in the analysis of sharp-edged targets where the accurate modelling of singular fields is of great importance. Moreover, our schemes manifest in general great flexibility in the analysis of composite objects with junctions as the special modelling of currents at junctions is not required. Finally, the proposed implementations can handle geometrically nonconformal meshes when applied to piecewise (or fully) homogeneous arbitrarily shaped objects.Postprint (published version
    corecore