67 research outputs found

    Parallel Real-Time Scheduling for Latency-Critical Applications

    Get PDF
    In order to provide safety guarantees or quality of service guarantees, many of today\u27s systems consist of latency-critical applications, e.g. applications with timing constraints. The problem of scheduling multiple latency-critical jobs on a multiprocessor or multicore machine has been extensively studied for sequential (non-parallizable) jobs and different system models and different objectives have been considered. However, the computational requirement of a single job is still limited by the capacity of a single core. To provide increasingly complex functionalities of applications and to complete their higher computational demands within the same or even more stringent timing constraints, we must exploit the internal parallelism of jobs, where individual jobs are parallel programs and can potentially utilize more than one core in parallel. However, there is little work considering scheduling multiple parallel jobs that are latency-critical. This dissertation focuses on developing new scheduling strategies, analysis tools, and practical platform design techniques to enable efficient and scalable parallel real-time scheduling for latency-critical applications on multicore systems. In particular, the research is focused on two types of systems: (1) static real-time systems for tasks with deadlines where the temporal properties of the tasks that need to execute is known a priori and the goal is to guarantee the temporal correctness of the tasks prior to their executions; and (2) online systems for latency-critical jobs where multiple jobs arrive over time and the goal to optimize for a performance objective of jobs during the execution. For static real-time systems for parallel tasks, several scheduling strategies, including global earliest deadline first, global rate monotonic and a novel federated scheduling, are proposed, analyzed and implemented. These scheduling strategies have the best known theoretical performance for parallel real-time tasks under any global strategy, any fixed priority scheduling and any scheduling strategy, respectively. In addition, federated scheduling is generalized to systems with multiple criticality levels and systems with stochastic tasks. Both numerical and empirical experiments show that federated scheduling and its variations have good schedulability performance and are efficient in practice. For online systems with multiple latency-critical jobs, different online scheduling strategies are proposed and analyzed for different objectives, including maximizing the number of jobs meeting a target latency, maximizing the profit of jobs, minimizing the maximum latency and minimizing the average latency. For example, a simple First-In-First-Out scheduler is proven to be scalable for minimizing the maximum latency. Based on this theoretical intuition, a more practical work-stealing scheduler is developed, analyzed and implemented. Empirical evaluations indicate that, on both real world and synthetic workloads, this work-stealing implementation performs almost as well as an optimal scheduler

    Capacity Augmentation Bound of Federated Scheduling for Parallel DAG Tasks

    Get PDF
    We present a novel federated scheduling approach for parallel real-time tasks under a general directed acyclic graph (DAG) model. We provide a capacity augmentation bound of 2 for hard real-time scheduling; here we use the worst-case execution time and critical-path length of tasks to determine schedulability. This is the best known capacity augmentation bound for parallel tasks. By constructing example task sets, we further show that the lower bound on capacity augmentation of federated scheduling is also 2 for any m \u3e 2. Hence, the gap is closed and bound 2 is a strict bound for federated scheduling. The federated scheduling algorithm is also a schedulability test that often admits task sets with utilization much greater than 50%m

    Energy-Efficient Multiprocessor Scheduling for Flow Time and Makespan

    Full text link
    We consider energy-efficient scheduling on multiprocessors, where the speed of each processor can be individually scaled, and a processor consumes power sαs^{\alpha} when running at speed ss, for α>1\alpha>1. A scheduling algorithm needs to decide at any time both processor allocations and processor speeds for a set of parallel jobs with time-varying parallelism. The objective is to minimize the sum of the total energy consumption and certain performance metric, which in this paper includes total flow time and makespan. For both objectives, we present instantaneous parallelism clairvoyant (IP-clairvoyant) algorithms that are aware of the instantaneous parallelism of the jobs at any time but not their future characteristics, such as remaining parallelism and work. For total flow time plus energy, we present an O(1)O(1)-competitive algorithm, which significantly improves upon the best known non-clairvoyant algorithm and is the first constant competitive result on multiprocessor speed scaling for parallel jobs. In the case of makespan plus energy, which is considered for the first time in the literature, we present an O(ln11/αP)O(\ln^{1-1/\alpha}P)-competitive algorithm, where PP is the total number of processors. We show that this algorithm is asymptotically optimal by providing a matching lower bound. In addition, we also study non-clairvoyant scheduling for total flow time plus energy, and present an algorithm that achieves O(lnP)O(\ln P)-competitive for jobs with arbitrary release time and O(ln1/αP)O(\ln^{1/\alpha}P)-competitive for jobs with identical release time. Finally, we prove an Ω(ln1/αP)\Omega(\ln^{1/\alpha}P) lower bound on the competitive ratio of any non-clairvoyant algorithm, matching the upper bound of our algorithm for jobs with identical release time

    08071 Abstracts Collection -- Scheduling

    Get PDF
    From 10.02. to 15.02., the Dagstuhl Seminar 08071 ``Scheduling\u27\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    Mixed Criticality Systems - A Review : (13th Edition, February 2022)

    Get PDF
    This review covers research on the topic of mixed criticality systems that has been published since Vestal’s 2007 paper. It covers the period up to end of 2021. The review is organised into the following topics: introduction and motivation, models, single processor analysis (including job-based, hard and soft tasks, fixed priority and EDF scheduling, shared resources and static and synchronous scheduling), multiprocessor analysis, related topics, realistic models, formal treatments, systems issues, industrial practice and research beyond mixed-criticality. A list of PhDs awarded for research relating to mixed-criticality systems is also included

    Resource-Constrained Scheduling of Stochastic Tasks With Unknown Probability Distribution

    Get PDF
    This work introduces scheduling strategies to maximize the expected numberof independent tasks that can be executed on a cloud platform within a given budgetand under a deadline constraint. Task execution times are not known before execution;instead, the only information available to the scheduler is that they obey some (unknown)probability distribution. The scheduler needs to acquire some information before decidingfor a cutting threshold: instead of allowing all tasks to run until completion, one maywant to interrupt long-running tasks at some point. In addition, the cutting thresholdmay be reevaluated as new information is acquired when the execution progresses further.This works presents several strategies to determine a good cutting threshold, and to decidewhen to re-evaluate it. In particular, we use the Kaplan-Meier estimator to account fortasks that are still running when making a decision. The efficiency of our strategies isassessed through an extensive set of simulations with various budget and deadline values,and ranging over 14 probability distributions.Ce travail présente des stratégies d’ordonnancement permettant de maximiser le nombre attendu de tâches indépendantes pouvant être exécutées sur une plateforme de type cloud avec un budget donné et une contrainte de date limite. Le temps d’exécution des tâches est inconnu, on sait seulement qu’ils obéissent à une distribution de probabilité (inconnue). L’ordonnanceur peut décider à tout moment d’interrompre l’exécution d’une tâche (longue) en cours d’exécution et d’en lancer une nouvelle, mais le budget déjà utilisé pour la tâche interrompue est perdu. Le seuil d’interruption d’une tâche peut être recalculé au fur et à mesure que l’exécution progresse globalement. Ce travail présente plusieurs stratégies pour déterminer un bon seuil d’interruption, et pour décider quand le ré-évaluer. Nous utilisons l’estimateur de Kaplan-Meier pour prendre en compte les tâches en cours d’exécution au moment où la décision est prise. L’efficacité de nos stratégies est évaluée via un vaste ensemble de simulations, avec diverses valeurs de budget et de date limite, et portant sur 14 distributions de probabilit

    On-Line Dependability Enhancement of Multiprocessor SoCs by Resource Management

    Get PDF
    This paper describes a new approach towards dependable design of homogeneous multi-processor SoCs in an example satellite-navigation application. First, the NoC dependability is functionally verified via embedded software. Then the Xentium processor tiles are periodically verified via on-line self-testing techniques, by using a new IIP Dependability Manager. Based on the Dependability Manager results, faulty tiles are electronically excluded and replaced by fault-free spare tiles via on-line resource management. This integrated approach enables fast electronic fault detection/diagnosis and repair, and hence a high system availability. The dependability application runs in parallel with the actual application, resulting in a very dependable system. All parts have been verified by simulation

    A survey of offline algorithms for energy minimization under deadline constraints

    Get PDF
    Modern computers allow software to adjust power management settings like speed and sleep modes to decrease the power consumption, possibly at the price of a decreased performance. The impact of these techniques mainly depends on the schedule of the tasks. In this article, a survey on underlying theoretical results on power management, as well as offline scheduling algorithms that aim at minimizing the energy consumption under real-time constraints, is given

    Resource-Efficient Scheduling Of Multiprocessor Mixed-Criticality Real-Time Systems

    Get PDF
    Timing guarantee is critical to ensure the correctness of embedded software systems that interact with the physical environment. As modern embedded real-time systems evolves, they face three challenges: resource constraints, mixed-criticality, and multiprocessors. This dissertation focuses on resource-efficient scheduling techniques for mixed-criticality systems on multiprocessor platforms. While Mixed-Criticality (MC) scheduling has been extensively studied on uniprocessor plat- forms, the problem on multiprocessor platforms has been largely open. Multiprocessor al- gorithms are broadly classified into two categories: global and partitioned. Global schedul- ing approaches use a global run-queue and migrate tasks among processors for improved schedulability. Partitioned scheduling approaches use per processor run-queues and can reduce preemption/migration overheads in real implementation. Existing global scheduling schemes for MC systems have suffered from low schedulability. Our goal in the first work is to improve the schedulability of MC scheduling algorithms. Inspired by the fluid scheduling model in a regular (non-MC) domain, we have developed the MC-Fluid scheduling algo- rithm that executes a task with criticality-dependent rates. We have evaluated MC-Fluid in terms of the processor speedup factor: MC-Fluid is a multiprocessor MC scheduling algo- rithm with a speed factor of 4/3, which is known to be optimal. In other words, MC-Fluid can schedule any feasible mixed-criticality task system if each processor is sped up by a factor of 4/3. Although MC-Fluid is speedup-optimal, it is not directly implementable on multiprocessor platforms of real processors due to the fractional processor assumption where multiple task can be executed on one processor at the same time. In the second work, we have considered the characteristic of a real processor (executing only one task at a time) and have developed the MC-Discrete scheduling algorithm for regular (non-fluid) scheduling platforms. We have shown that MC-Discrete is also speedup-optimal. While our previous two works consider global scheduling approaches, our last work con- siders partitioned scheduling approaches, which are widely used in practice because of low implementation overheads. In addition to partitioned scheduling, the work consid- ers the limitation of conventional MC scheduling algorithms that drops all low-criticality tasks when violating a certain threshold of actual execution times. In practice, the system designer wants to execute the tasks as much as possible. To address the issue, we have de- veloped the MC-ADAPT scheduling framework under uniprocessor platforms to drop as few low-criticality tasks as possible. Extending the framework with partitioned multiprocessor platforms, we further reduce the dropping of low-criticality tasks by allowing migration of low-criticality tasks at the moment of a criticality switch. We have evaluated the quality of task dropping solution in terms of speedup factor. In existing work, the speedup factor has been used to evaluate MC scheduling algorithms in terms of schedulability under the worst-case scheduling scenario. In this work, we apply the speedup factor to evaluate MC scheduling algorithms in terms of the quality of their task dropping solution under various MC scheduling scenarios. We have derived that MC-ADAPT has a speedup factor of 1.618 for task dropping solution
    corecore