2,205 research outputs found

    Bipartite induced density in triangle-free graphs

    Full text link
    We prove that any triangle-free graph on nn vertices with minimum degree at least dd contains a bipartite induced subgraph of minimum degree at least d2/(2n)d^2/(2n). This is sharp up to a logarithmic factor in nn. Relatedly, we show that the fractional chromatic number of any such triangle-free graph is at most the minimum of n/dn/d and (2+o(1))n/logn(2+o(1))\sqrt{n/\log n} as nn\to\infty. This is sharp up to constant factors. Similarly, we show that the list chromatic number of any such triangle-free graph is at most O(min{n,(nlogn)/d})O(\min\{\sqrt{n},(n\log n)/d\}) as nn\to\infty. Relatedly, we also make two conjectures. First, any triangle-free graph on nn vertices has fractional chromatic number at most (2+o(1))n/logn(\sqrt{2}+o(1))\sqrt{n/\log n} as nn\to\infty. Second, any triangle-free graph on nn vertices has list chromatic number at most O(n/logn)O(\sqrt{n/\log n}) as nn\to\infty.Comment: 20 pages; in v2 added note of concurrent work and one reference; in v3 added more notes of ensuing work and a result towards one of the conjectures (for list colouring

    Distance colouring without one cycle length

    Get PDF
    We consider distance colourings in graphs of maximum degree at most dd and how excluding one fixed cycle length \ell affects the number of colours required as dd\to\infty. For vertex-colouring and t1t\ge 1, if any two distinct vertices connected by a path of at most tt edges are required to be coloured differently, then a reduction by a logarithmic (in dd) factor against the trivial bound O(dt)O(d^t) can be obtained by excluding an odd cycle length 3t\ell \ge 3t if tt is odd or by excluding an even cycle length 2t+2\ell \ge 2t+2. For edge-colouring and t2t\ge 2, if any two distinct edges connected by a path of fewer than tt edges are required to be coloured differently, then excluding an even cycle length 2t\ell \ge 2t is sufficient for a logarithmic factor reduction. For t2t\ge 2, neither of the above statements are possible for other parity combinations of \ell and tt. These results can be considered extensions of results due to Johansson (1996) and Mahdian (2000), and are related to open problems of Alon and Mohar (2002) and Kaiser and Kang (2014).Comment: 14 pages, 1 figur

    Cycles with consecutive odd lengths

    Full text link
    It is proved that there exists an absolute constant c > 0 such that for every natural number k, every non-bipartite 2-connected graph with average degree at least ck contains k cycles with consecutive odd lengths. This implies the existence of the absolute constant d > 0 that every non-bipartite 2-connected graph with minimum degree at least dk contains cycles of all lengths modulo k, thus providing an answer (in a strong form) to a question of Thomassen. Both results are sharp up to the constant factors.Comment: 7 page
    corecore