404 research outputs found

    Effects of Backtracking on PageRank

    Full text link
    In this paper, we consider three variations on standard PageRank: Non-backtracking PageRank, μ\mu-PageRank, and ∞\infty-PageRank, all of which alter the standard formula by adjusting the likelihood of backtracking in the algorithm's random walk. We show that in the case of regular and bipartite biregular graphs, standard PageRank and its variants are equivalent. We also compare each centrality measure and investigate their clustering capabilities

    Non-backtracking PageRank

    Get PDF
    The PageRank algorithm, which has been ``bringing order to the web" for more than twenty years, computes the steady state of a classical random walk plus teleporting. Here we consider a variation of PageRank that uses a non-backtracking random walk. To do this, we first reformulate PageRank in terms of the associated line graph. A non-backtracking analog then emerges naturally. Comparing the resulting steady states, we find that, even for undirected graphs, non-backtracking generally leads to a different ranking of the nodes. We then focus on computational issues, deriving an explicit representation of the new algorithm that can exploit structure and sparsity in the underlying network. Finally, we assess effectiveness and efficiency of this approach on some real-world networks

    Non backtracking PageRank

    Get PDF
    In questa tesi abbiamo analizzato il non backtracking PageRank, un algoritmo di classificazione variante del PageRank che non considera il backtracking, cioè i cammini che tornano nel nodo da cui sono partiti al passo subito successivo. Lo scopo di questa variante è ottenere una classificazione migliore in tutti quei problemi in cui il backtracking viene evitato. Siamo partiti introducendo il PageRank standard, per poi spiegare nel dettaglio il non backtracking PageRank e quali fossero le analogie e differenze tra i due. Ci siamo poi chiesti come risolvere computazionalmente il problema, studiando il risolutore di sistemi lineari GMRES e facendo delle osservazioni su come si possano ridurre il numero di iterazioni e il tempo di calcolo tramite il precondizionamento. Infine, abbiamo eseguito degli esperimenti sulle reti stradali di alcune città e confrontato i risultati ottenuti tramite le diverse classificazioni

    Centrality metrics and localization in core-periphery networks

    Full text link
    Two concepts of centrality have been defined in complex networks. The first considers the centrality of a node and many different metrics for it has been defined (e.g. eigenvector centrality, PageRank, non-backtracking centrality, etc). The second is related to a large scale organization of the network, the core-periphery structure, composed by a dense core plus an outlying and loosely-connected periphery. In this paper we investigate the relation between these two concepts. We consider networks generated via the Stochastic Block Model, or its degree corrected version, with a strong core-periphery structure and we investigate the centrality properties of the core nodes and the ability of several centrality metrics to identify them. We find that the three measures with the best performance are marginals obtained with belief propagation, PageRank, and degree centrality, while non-backtracking and eigenvector centrality (or MINRES}, showed to be equivalent to the latter in the large network limit) perform worse in the investigated networks.Comment: 15 pages, 8 figure

    Network centrality: an introduction

    Full text link
    Centrality is a key property of complex networks that influences the behavior of dynamical processes, like synchronization and epidemic spreading, and can bring important information about the organization of complex systems, like our brain and society. There are many metrics to quantify the node centrality in networks. Here, we review the main centrality measures and discuss their main features and limitations. The influence of network centrality on epidemic spreading and synchronization is also pointed out in this chapter. Moreover, we present the application of centrality measures to understand the function of complex systems, including biological and cortical networks. Finally, we discuss some perspectives and challenges to generalize centrality measures for multilayer and temporal networks.Comment: Book Chapter in "From nonlinear dynamics to complex systems: A Mathematical modeling approach" by Springe

    On Spectral Graph Embedding: A Non-Backtracking Perspective and Graph Approximation

    Full text link
    Graph embedding has been proven to be efficient and effective in facilitating graph analysis. In this paper, we present a novel spectral framework called NOn-Backtracking Embedding (NOBE), which offers a new perspective that organizes graph data at a deep level by tracking the flow traversing on the edges with backtracking prohibited. Further, by analyzing the non-backtracking process, a technique called graph approximation is devised, which provides a channel to transform the spectral decomposition on an edge-to-edge matrix to that on a node-to-node matrix. Theoretical guarantees are provided by bounding the difference between the corresponding eigenvalues of the original graph and its graph approximation. Extensive experiments conducted on various real-world networks demonstrate the efficacy of our methods on both macroscopic and microscopic levels, including clustering and structural hole spanner detection.Comment: SDM 2018 (Full version including all proofs

    Theories for influencer identification in complex networks

    Full text link
    In social and biological systems, the structural heterogeneity of interaction networks gives rise to the emergence of a small set of influential nodes, or influencers, in a series of dynamical processes. Although much smaller than the entire network, these influencers were observed to be able to shape the collective dynamics of large populations in different contexts. As such, the successful identification of influencers should have profound implications in various real-world spreading dynamics such as viral marketing, epidemic outbreaks and cascading failure. In this chapter, we first summarize the centrality-based approach in finding single influencers in complex networks, and then discuss the more complicated problem of locating multiple influencers from a collective point of view. Progress rooted in collective influence theory, belief-propagation and computer science will be presented. Finally, we present some applications of influencer identification in diverse real-world systems, including online social platforms, scientific publication, brain networks and socioeconomic systems.Comment: 24 pages, 6 figure

    Collective Influence of Multiple Spreaders Evaluated by Tracing Real Information Flow in Large-Scale Social Networks

    Full text link
    Identifying the most influential spreaders that maximize information flow is a central question in network theory. Recently, a scalable method called "Collective Influence (CI)" has been put forward through collective influence maximization. In contrast to heuristic methods evaluating nodes' significance separately, CI method inspects the collective influence of multiple spreaders. Despite that CI applies to the influence maximization problem in percolation model, it is still important to examine its efficacy in realistic information spreading. Here, we examine real-world information flow in various social and scientific platforms including American Physical Society, Facebook, Twitter and LiveJournal. Since empirical data cannot be directly mapped to ideal multi-source spreading, we leverage the behavioral patterns of users extracted from data to construct "virtual" information spreading processes. Our results demonstrate that the set of spreaders selected by CI can induce larger scale of information propagation. Moreover, local measures as the number of connections or citations are not necessarily the deterministic factors of nodes' importance in realistic information spreading. This result has significance for rankings scientists in scientific networks like the APS, where the commonly used number of citations can be a poor indicator of the collective influence of authors in the community.Comment: 11 pages, 4 figure
    • …
    corecore