1,168 research outputs found

    Adaptive Control for a Class of Non-affine Nonlinear Systems via Neural Networks

    Get PDF

    Decentralized adaptive neural network control of interconnected nonlinear dynamical systems with application to power system

    Get PDF
    Traditional nonlinear techniques cannot be directly applicable to control large scale interconnected nonlinear dynamic systems due their sheer size and unavailability of system dynamics. Therefore, in this dissertation, the decentralized adaptive neural network (NN) control of a class of nonlinear interconnected dynamic systems is introduced and its application to power systems is presented in the form of six papers. In the first paper, a new nonlinear dynamical representation in the form of a large scale interconnected system for a power network free of algebraic equations with multiple UPFCs as nonlinear controllers is presented. Then, oscillation damping for UPFCs using adaptive NN control is discussed by assuming that the system dynamics are known. Subsequently, the dynamic surface control (DSC) framework is proposed in continuous-time not only to overcome the need for the subsystem dynamics and interconnection terms, but also to relax the explosion of complexity problem normally observed in traditional backstepping. The application of DSC-based decentralized control of power system with excitation control is shown in the third paper. On the other hand, a novel adaptive NN-based decentralized controller for a class of interconnected discrete-time systems with unknown subsystem and interconnection dynamics is introduced since discrete-time is preferred for implementation. The application of the decentralized controller is shown on a power network. Next, a near optimal decentralized discrete-time controller is introduced in the fifth paper for such systems in affine form whereas the sixth paper proposes a method for obtaining the L2-gain near optimal control while keeping a tradeoff between accuracy and computational complexity. Lyapunov theory is employed to assess the stability of the controllers --Abstract, page iv

    Event-triggered near optimal adaptive control of interconnected systems

    Get PDF
    Increased interest in complex interconnected systems like smart-grid, cyber manufacturing have attracted researchers to develop optimal adaptive control schemes to elicit a desired performance when the complex system dynamics are uncertain. In this dissertation, motivated by the fact that aperiodic event sampling saves network resources while ensuring system stability, a suite of novel event-sampled distributed near-optimal adaptive control schemes are introduced for uncertain linear and affine nonlinear interconnected systems in a forward-in-time and online manner. First, a novel stochastic hybrid Q-learning scheme is proposed to generate optimal adaptive control law and to accelerate the learning process in the presence of random delays and packet losses resulting from the communication network for an uncertain linear interconnected system. Subsequently, a novel online reinforcement learning (RL) approach is proposed to solve the Hamilton-Jacobi-Bellman (HJB) equation by using neural networks (NNs) for generating distributed optimal control of nonlinear interconnected systems using state and output feedback. To relax the state vector measurements, distributed observers are introduced. Next, using RL, an improved NN learning rule is derived to solve the HJB equation for uncertain nonlinear interconnected systems with event-triggered feedback. Distributed NN identifiers are introduced both for approximating the uncertain nonlinear dynamics and to serve as a model for online exploration. Next, the control policy and the event-sampling errors are considered as non-cooperative players and a min-max optimization problem is formulated for linear and affine nonlinear systems by using zero-sum game approach for simultaneous optimization of both the control policy and the event based sampling instants. The net result is the development of optimal adaptive event-triggered control of uncertain dynamic systems --Abstract, page iv

    Decentralized Optimal Control With Application In Power System

    Get PDF
    An output-feedback decentralized optimal controller is proposed for power systems with renewable energy penetration. Renewable energy source is modeled similar to the classical generator model and is equipped with the unified power flow controller (UPFC). The transient performance of power system is considered and stability of the dynamical states are investigated. An offline decentralized optimal controller is designed that utilizes only the local states. The network comprises conventional synchronous generators as well as renewable sources with inverter equipped with UPFC. Subsequently, the optimal decentralized controller is compared to the initial stabilizing controller used to obtain the optimal controller. An online decentralized optimal controller is designed for discrete-time system. Two neuro networks are utilized to estimate value function and optimal control strategy. Furthermore, a novel observer-based decentralized optimal controller is developed on small scale discrete-time power system. The system is trained followed by least square rules and successive approximation. Simulation results on IEEE 14-, 30-, and 118-bus power system benchmarks shows satisfactory performance of the online decentralized controller. And also, simulation results demonstrate great performance of the observer and the optimal controller compare to the centralized optimal controller

    Adaptive Control

    Get PDF
    Adaptive control has been a remarkable field for industrial and academic research since 1950s. Since more and more adaptive algorithms are applied in various control applications, it is becoming very important for practical implementation. As it can be confirmed from the increasing number of conferences and journals on adaptive control topics, it is certain that the adaptive control is a significant guidance for technology development.The authors the chapters in this book are professionals in their areas and their recent research results are presented in this book which will also provide new ideas for improved performance of various control application problems

    Nonlinear Pseudo State-Feedback Controller Design for Affine Fuzzy Large-Scale Systems with H∞ Performance

    Get PDF
    Acord transformatiu CRUE-CSICThis paper treats robust controller design for Affine Fuzzy Large-Scale Systems (AFLSS) composed of Takagi-Sugeno-Kang type fuzzy subsystems with offset terms, disturbances, uncertainties, and interconnections. Instead of fuzzy parallel distributed compensation, a decentralized nonlinear pseudo state-feedback is developed for each subsystem to stabilize the overall AFLSS. Using Lyapunov stability, sufficient conditions with low codemputational effort and free gains are derived in terms of matrix inequalities. The proposed controller guarantees asymptotic stability, robust stabilization, and H∞ control performance of the AFLSS. A numerical example is given to illustrate the feasibility and effectiveness of the proposed approach
    • …
    corecore