8,322 research outputs found

    Machine learning in solar physics

    Full text link
    The application of machine learning in solar physics has the potential to greatly enhance our understanding of the complex processes that take place in the atmosphere of the Sun. By using techniques such as deep learning, we are now in the position to analyze large amounts of data from solar observations and identify patterns and trends that may not have been apparent using traditional methods. This can help us improve our understanding of explosive events like solar flares, which can have a strong effect on the Earth environment. Predicting hazardous events on Earth becomes crucial for our technological society. Machine learning can also improve our understanding of the inner workings of the sun itself by allowing us to go deeper into the data and to propose more complex models to explain them. Additionally, the use of machine learning can help to automate the analysis of solar data, reducing the need for manual labor and increasing the efficiency of research in this field.Comment: 100 pages, 13 figures, 286 references, accepted for publication as a Living Review in Solar Physics (LRSP

    Segmentation of Pathology Images: A Deep Learning Strategy with Annotated Data

    Get PDF
    Cancer has significantly threatened human life and health for many years. In the clinic, histopathology image segmentation is the golden stand for evaluating the prediction of patient prognosis and treatment outcome. Generally, manually labelling tumour regions in hundreds of high-resolution histopathological images is time-consuming and expensive for pathologists. Recently, the advancements in hardware and computer vision have allowed deep-learning-based methods to become mainstream to segment tumours automatically, significantly reducing the workload of pathologists. However, most current methods rely on large-scale labelled histopathological images. Therefore, this research studies label-effective tumour segmentation methods using deep-learning paradigms to relieve the annotation limitations. Chapter 3 proposes an ensemble framework for fully-supervised tumour segmentation. Usually, the performance of an individual-trained network is limited by significant morphological variances in histopathological images. We propose a fully-supervised learning ensemble fusion model that uses both shallow and deep U-Nets, trained with images of different resolutions and subsets of images, for robust predictions of tumour regions. Noise elimination is achieved with Convolutional Conditional Random Fields. Two open datasets are used to evaluate the proposed method: the ACDC@LungHP challenge at ISBI2019 and the DigestPath challenge at MICCAI2019. With a dice coefficient of 79.7 %, the proposed method takes third place in ACDC@LungHP. In DigestPath 2019, the proposed method achieves a dice coefficient 77.3 %. Well-annotated images are an indispensable part of training fully-supervised segmentation strategies. However, large-scale histopathology images are hardly annotated finely in clinical practice. It is common for labels to be of poor quality or for only a few images to be manually marked by experts. Consequently, fully-supervised methods cannot perform well in these cases. Chapter 4 proposes a self-supervised contrast learning for tumour segmentation. A self-supervised cancer segmentation framework is proposed to reduce label dependency. An innovative contrastive learning scheme is developed to represent tumour features based on unlabelled images. Unlike a normal U-Net, the backbone is a patch-based segmentation network. Additionally, data augmentation and contrastive losses are applied to improve the discriminability of tumour features. A convolutional Conditional Random Field is used to smooth and eliminate noise. Three labelled, and fourteen unlabelled images are collected from a private skin cancer dataset called BSS. Experimental results show that the proposed method achieves better tumour segmentation performance than other popular self-supervised methods. However, by evaluated on the same public dataset as chapter 3, the proposed self-supervised method is hard to handle fine-grained segmentation around tumour boundaries compared to the supervised method we proposed. Chapter 5 proposes a sketch-based weakly-supervised tumour segmentation method. To segment tumour regions precisely with coarse annotations, a sketch-supervised method is proposed, containing a dual CNN-Transformer network and a global normalised class activation map. CNN-Transformer networks simultaneously model global and local tumour features. With the global normalised class activation map, a gradient-based tumour representation can be obtained from the dual network predictions. We invited experts to mark fine and coarse annotations in the private BSS and the public PAIP2019 datasets to facilitate reproducible performance comparisons. Using the BSS dataset, the proposed method achieves 76.686 % IOU and 86.6 % Dice scores, outperforming state-of-the-art methods. Additionally, the proposed method achieves a Dice gain of 8.372 % compared with U-Net on the PAIP2019 dataset. The thesis presents three approaches to segmenting cancers from histology images: fully-supervised, unsupervised, and weakly supervised methods. This research effectively segments tumour regions based on histopathological annotations and well-designed modules. Our studies comprehensively demonstrate label-effective automatic histopathological image segmentation. Experimental results prove that our works achieve state-of-the-art segmentation performances on private and public datasets. In the future, we plan to integrate more tumour feature representation technologies with other medical modalities and apply them to clinical research

    Reinforcement learning in large state action spaces

    Get PDF
    Reinforcement learning (RL) is a promising framework for training intelligent agents which learn to optimize long term utility by directly interacting with the environment. Creating RL methods which scale to large state-action spaces is a critical problem towards ensuring real world deployment of RL systems. However, several challenges limit the applicability of RL to large scale settings. These include difficulties with exploration, low sample efficiency, computational intractability, task constraints like decentralization and lack of guarantees about important properties like performance, generalization and robustness in potentially unseen scenarios. This thesis is motivated towards bridging the aforementioned gap. We propose several principled algorithms and frameworks for studying and addressing the above challenges RL. The proposed methods cover a wide range of RL settings (single and multi-agent systems (MAS) with all the variations in the latter, prediction and control, model-based and model-free methods, value-based and policy-based methods). In this work we propose the first results on several different problems: e.g. tensorization of the Bellman equation which allows exponential sample efficiency gains (Chapter 4), provable suboptimality arising from structural constraints in MAS(Chapter 3), combinatorial generalization results in cooperative MAS(Chapter 5), generalization results on observation shifts(Chapter 7), learning deterministic policies in a probabilistic RL framework(Chapter 6). Our algorithms exhibit provably enhanced performance and sample efficiency along with better scalability. Additionally, we also shed light on generalization aspects of the agents under different frameworks. These properties have been been driven by the use of several advanced tools (e.g. statistical machine learning, state abstraction, variational inference, tensor theory). In summary, the contributions in this thesis significantly advance progress towards making RL agents ready for large scale, real world applications

    Knowledge Distillation and Continual Learning for Optimized Deep Neural Networks

    Get PDF
    Over the past few years, deep learning (DL) has been achieving state-of-theart performance on various human tasks such as speech generation, language translation, image segmentation, and object detection. While traditional machine learning models require hand-crafted features, deep learning algorithms can automatically extract discriminative features and learn complex knowledge from large datasets. This powerful learning ability makes deep learning models attractive to both academia and big corporations. Despite their popularity, deep learning methods still have two main limitations: large memory consumption and catastrophic knowledge forgetting. First, DL algorithms use very deep neural networks (DNNs) with many billion parameters, which have a big model size and a slow inference speed. This restricts the application of DNNs in resource-constraint devices such as mobile phones and autonomous vehicles. Second, DNNs are known to suffer from catastrophic forgetting. When incrementally learning new tasks, the model performance on old tasks significantly drops. The ability to accommodate new knowledge while retaining previously learned knowledge is called continual learning. Since the realworld environments in which the model operates are always evolving, a robust neural network needs to have this continual learning ability for adapting to new changes

    Graph-based Algorithm Unfolding for Energy-aware Power Allocation in Wireless Networks

    Full text link
    We develop a novel graph-based trainable framework to maximize the weighted sum energy efficiency (WSEE) for power allocation in wireless communication networks. To address the non-convex nature of the problem, the proposed method consists of modular structures inspired by a classical iterative suboptimal approach and enhanced with learnable components. More precisely, we propose a deep unfolding of the successive concave approximation (SCA) method. In our unfolded SCA (USCA) framework, the originally preset parameters are now learnable via graph convolutional neural networks (GCNs) that directly exploit multi-user channel state information as the underlying graph adjacency matrix. We show the permutation equivariance of the proposed architecture, which is a desirable property for models applied to wireless network data. The USCA framework is trained through a stochastic gradient descent approach using a progressive training strategy. The unsupervised loss is carefully devised to feature the monotonic property of the objective under maximum power constraints. Comprehensive numerical results demonstrate its generalizability across different network topologies of varying size, density, and channel distribution. Thorough comparisons illustrate the improved performance and robustness of USCA over state-of-the-art benchmarks.Comment: Published in IEEE Transactions on Wireless Communication

    Colour technologies for content production and distribution of broadcast content

    Get PDF
    The requirement of colour reproduction has long been a priority driving the development of new colour imaging systems that maximise human perceptual plausibility. This thesis explores machine learning algorithms for colour processing to assist both content production and distribution. First, this research studies colourisation technologies with practical use cases in restoration and processing of archived content. The research targets practical deployable solutions, developing a cost-effective pipeline which integrates the activity of the producer into the processing workflow. In particular, a fully automatic image colourisation paradigm using Conditional GANs is proposed to improve content generalisation and colourfulness of existing baselines. Moreover, a more conservative solution is considered by providing references to guide the system towards more accurate colour predictions. A fast-end-to-end architecture is proposed to improve existing exemplar-based image colourisation methods while decreasing the complexity and runtime. Finally, the proposed image-based methods are integrated into a video colourisation pipeline. A general framework is proposed to reduce the generation of temporal flickering or propagation of errors when such methods are applied frame-to-frame. The proposed model is jointly trained to stabilise the input video and to cluster their frames with the aim of learning scene-specific modes. Second, this research explored colour processing technologies for content distribution with the aim to effectively deliver the processed content to the broad audience. In particular, video compression is tackled by introducing a novel methodology for chroma intra prediction based on attention models. Although the proposed architecture helped to gain control over the reference samples and better understand the prediction process, the complexity of the underlying neural network significantly increased the encoding and decoding time. Therefore, aiming at efficient deployment within the latest video coding standards, this work also focused on the simplification of the proposed architecture to obtain a more compact and explainable model

    Multimodal spatio-temporal deep learning framework for 3D object detection in instrumented vehicles

    Get PDF
    This thesis presents the utilization of multiple modalities, such as image and lidar, to incorporate spatio-temporal information from sequence data into deep learning architectures for 3Dobject detection in instrumented vehicles. The race to autonomy in instrumented vehicles or self-driving cars has stimulated significant research in developing autonomous driver assistance systems (ADAS) technologies related explicitly to perception systems. Object detection plays a crucial role in perception systems by providing spatial information to its subsequent modules; hence, accurate detection is a significant task supporting autonomous driving. The advent of deep learning in computer vision applications and the availability of multiple sensing modalities such as 360Ā° imaging, lidar, and radar have led to state-of-the-art 2D and 3Dobject detection architectures. Most current state-of-the-art 3D object detection frameworks consider single-frame reference. However, these methods do not utilize temporal information associated with the objects or scenes from the sequence data. Thus, the present research hypothesizes that multimodal temporal information can contribute to bridging the gap between 2D and 3D metric space by improving the accuracy of deep learning frameworks for 3D object estimations. The thesis presents understanding multimodal data representations and selecting hyper-parameters using public datasets such as KITTI and nuScenes with Frustum-ConvNet as a baseline architecture. Secondly, an attention mechanism was employed along with convolutional-LSTM to extract spatial-temporal information from sequence data to improve 3D estimations and to aid the architecture in focusing on salient lidar point cloud features. Finally, various fusion strategies are applied to fuse the modalities and temporal information into the architecture to assess its efficacy on performance and computational complexity. Overall, this thesis has established the importance and utility of multimodal systems for refined 3D object detection and proposed a complex pipeline incorporating spatial, temporal and attention mechanisms to improve specific, and general class accuracy demonstrated on key autonomous driving data sets

    Modelling, Monitoring, Control and Optimization for Complex Industrial Processes

    Get PDF
    This reprint includes 22 research papers and an editorial, collected from the Special Issue "Modelling, Monitoring, Control and Optimization for Complex Industrial Processes", highlighting recent research advances and emerging research directions in complex industrial processes. This reprint aims to promote the research field and benefit the readers from both academic communities and industrial sectors

    Affinity-Based Reinforcement Learning : A New Paradigm for Agent Interpretability

    Get PDF
    The steady increase in complexity of reinforcement learning (RL) algorithms is accompanied by a corresponding increase in opacity that obfuscates insights into their devised strategies. Methods in explainable artificial intelligence seek to mitigate this opacity by either creating transparent algorithms or extracting explanations post hoc. A third category exists that allows the developer to affect what agents learn: constrained RL has been used in safety-critical applications and prohibits agents from visiting certain states; preference-based RL agents have been used in robotics applications and learn state-action preferences instead of traditional reward functions. We propose a new affinity-based RL paradigm in which agents learn strategies that are partially decoupled from reward functions. Unlike entropy regularisation, we regularise the objective function with a distinct action distribution that represents a desired behaviour; we encourage the agent to act according to a prior while learning to maximise rewards. The result is an inherently interpretable agent that solves problems with an intrinsic affinity for certain actions. We demonstrate the utility of our method in a financial application: we learn continuous time-variant compositions of prototypical policies, each interpretable by its action affinities, that are globally interpretable according to customersā€™ financial personalities. Our method combines advantages from both constrained RL and preferencebased RL: it retains the reward function but generalises the policy to match a defined behaviour, thus avoiding problems such as reward shaping and hacking. Unlike Boolean task composition, our method is a fuzzy superposition of different prototypical strategies to arrive at a more complex, yet interpretable, strategy.publishedVersio
    • ā€¦
    corecore