7,209 research outputs found

    Using mathematical models to help understand biological pattern formation

    Get PDF
    One of the characteristics of biological systems is their ability to produce and sustain spatial and spatio-temporal pattern. Elucidating the underlying mechanisms responsible for this phenomenon has been the goal of much experimental and theoretical research. This paper illustrates this area of research by presenting some of the mathematical models that have been proposed to account for pattern formation in biology and considering their implications.To cite this article: P.K. Maini, C. R. Biologies 327 (2004)

    Self-organization of network dynamics into local quantized states

    Get PDF
    Self-organization and pattern formation in network-organized systems emerges from the collective activation and interaction of many interconnected units. A striking feature of these non-equilibrium structures is that they are often localized and robust: only a small subset of the nodes, or cell assembly, is activated. Understanding the role of cell assemblies as basic functional units in neural networks and socio-technical systems emerges as a fundamental challenge in network theory. A key open question is how these elementary building blocks emerge, and how they operate, linking structure and function in complex networks. Here we show that a network analogue of the Swift-Hohenberg continuum model---a minimal-ingredients model of nodal activation and interaction within a complex network---is able to produce a complex suite of localized patterns. Hence, the spontaneous formation of robust operational cell assemblies in complex networks can be explained as the result of self-organization, even in the absence of synaptic reinforcements. Our results show that these self-organized, local structures can provide robust functional units to understand natural and socio-technical network-organized processes.Comment: 11 pages, 4 figure

    Resonance and frequency-locking phenomena in spatially extended phytoplankton-zooplankton system with additive noise and periodic forces

    Full text link
    In this paper, we present a spatial version of phytoplankton-zooplankton model that includes some important factors such as external periodic forces, noise, and diffusion processes. The spatially extended phytoplankton-zooplankton system is from the original study by Scheffer [M Scheffer, Fish and nutrients interplay determines algal biomass: a minimal model, Oikos \textbf{62} (1991) 271-282]. Our results show that the spatially extended system exhibit a resonant patterns and frequency-locking phenomena. The system also shows that the noise and the external periodic forces play a constructive role in the Scheffer's model: first, the noise can enhance the oscillation of phytoplankton species' density and format a large clusters in the space when the noise intensity is within certain interval. Second, the external periodic forces can induce 4:1 and 1:1 frequency-locking and spatially homogeneous oscillation phenomena to appear. Finally, the resonant patterns are observed in the system when the spatial noises and external periodic forces are both turned on. Moreover, we found that the 4:1 frequency-locking transform into 1:1 frequency-locking when the noise intensity increased. In addition to elucidating our results outside the domain of Turing instability, we provide further analysis of Turing linear stability with the help of the numerical calculation by using the Maple software. Significantly, oscillations are enhanced in the system when the noise term presents. These results indicate that the oceanic plankton bloom may partly due to interplay between the stochastic factors and external forces instead of deterministic factors. These results also may help us to understand the effects arising from undeniable subject to random fluctuations in oceanic plankton bloom.Comment: Some typos errors are proof, and some strong relate references are adde
    • …
    corecore