675 research outputs found

    Subgraphs and Colourability of Locatable Graphs

    Full text link
    We study a game of pursuit and evasion introduced by Seager in 2012, in which a cop searches the robber from outside the graph, using distance queries. A graph on which the cop wins is called locatable. In her original paper, Seager asked whether there exists a characterisation of the graph property of locatable graphs by either forbidden or forbidden induced subgraphs, both of which we answer in the negative. We then proceed to show that such a characterisation does exist for graphs of diameter at most 2, stating it explicitly, and note that this is not true for higher diameter. Exploring a different direction of topic, we also start research in the direction of colourability of locatable graphs, we also show that every locatable graph is 4-colourable, but not necessarily 3-colourable.Comment: 25 page

    Smallest snarks with oddness 4 and cyclic connectivity 4 have order 44

    Get PDF
    The family of snarks -- connected bridgeless cubic graphs that cannot be 3-edge-coloured -- is well-known as a potential source of counterexamples to several important and long-standing conjectures in graph theory. These include the cycle double cover conjecture, Tutte's 5-flow conjecture, Fulkerson's conjecture, and several others. One way of approaching these conjectures is through the study of structural properties of snarks and construction of small examples with given properties. In this paper we deal with the problem of determining the smallest order of a nontrivial snark (that is, one which is cyclically 4-edge-connected and has girth at least 5) of oddness at least 4. Using a combination of structural analysis with extensive computations we prove that the smallest order of a snark with oddness at least 4 and cyclic connectivity 4 is 44. Formerly it was known that such a snark must have at least 38 vertices [J. Combin. Theory Ser. B 103 (2013), 468--488] and one such snark on 44 vertices was constructed by Lukot'ka et al. [Electron. J. Combin. 22 (2015), #P1.51]. The proof requires determining all cyclically 4-edge-connected snarks on 36 vertices, which extends the previously compiled list of all such snarks up to 34 vertices [J. Combin. Theory Ser. B, loc. cit.]. As a by-product, we use this new list to test the validity of several conjectures where snarks can be smallest counterexamples.Comment: 21 page

    Some snarks are worse than others

    Full text link
    Many conjectures and open problems in graph theory can either be reduced to cubic graphs or are directly stated for cubic graphs. Furthermore, it is known that for a lot of problems, a counterexample must be a snark, i.e. a bridgeless cubic graph which is not 3--edge-colourable. In this paper we deal with the fact that the family of potential counterexamples to many interesting conjectures can be narrowed even further to the family S5{\cal S}_{\geq 5} of bridgeless cubic graphs whose edge set cannot be covered with four perfect matchings. The Cycle Double Cover Conjecture, the Shortest Cycle Cover Conjecture and the Fan-Raspaud Conjecture are examples of statements for which S5{\cal S}_{\geq 5} is crucial. In this paper, we study parameters which have the potential to further refine S5{\cal S}_{\geq 5} and thus enlarge the set of cubic graphs for which the mentioned conjectures can be verified. We show that S5{\cal S}_{\geq 5} can be naturally decomposed into subsets with increasing complexity, thereby producing a natural scale for proving these conjectures. More precisely, we consider the following parameters and questions: given a bridgeless cubic graph, (i) how many perfect matchings need to be added, (ii) how many copies of the same perfect matching need to be added, and (iii) how many 2--factors need to be added so that the resulting regular graph is Class I? We present new results for these parameters and we also establish some strong relations between these problems and some long-standing conjectures.Comment: 27 pages, 16 figure

    On the Complexity of Role Colouring Planar Graphs, Trees and Cographs

    Full text link
    We prove several results about the complexity of the role colouring problem. A role colouring of a graph GG is an assignment of colours to the vertices of GG such that two vertices of the same colour have identical sets of colours in their neighbourhoods. We show that the problem of finding a role colouring with 1<k<n1< k <n colours is NP-hard for planar graphs. We show that restricting the problem to trees yields a polynomially solvable case, as long as kk is either constant or has a constant difference with nn, the number of vertices in the tree. Finally, we prove that cographs are always kk-role-colourable for 1<kn1<k\leq n and construct such a colouring in polynomial time
    corecore