158 research outputs found

    High-Q spectral peaks and nonstationarity in the deep ocean infragravity wave band: Tidal harmonics and solar normal modes

    Get PDF
    Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Oceans 124(3), (2019):2072-2087, doi:10.1029/2018JC014586.Infragravity waves have received the least study of any class of waves in the deep ocean. This paper analyzes a 389‐day‐long deep ocean pressure record from the Hawaii Ocean Mixing Experiment for the presence of narrowband (≲2 μHz) components and nonstationarity over 400–4,000 μHz using a combination of fitting a mixture noncentral/central χ2 model to spectral estimates, high‐resolution multitaper spectral estimation, and computation of the offset coherence between distinct frequencies for a given data segment. In the frequency band 400–1,000 μHz there is a noncentral fraction of 0.67 ± 0.07 that decreases with increasing frequency. Evidence is presented for the presence of tidal harmonics in the data over the 400‐ to 1,400‐μHz bands. Above ~2,000 μHz the noncentral fraction rises with frequency, comprising about one third of the spectral estimates over 3,000–4,000 μHz. The power spectrum exhibits frequent narrowband peaks at 6–11 standard deviations above the noise level. The widths of the peaks correspond to a Q of at least 1,000, vastly exceeding that of any oceanic or atmospheric process. The offset coherence shows that the spectral peaks have substantial (p = 0.99–0.9999) interfrequency correlation, both locally and between distinct peaks within a given analysis band. Many of the peak frequencies correspond to the known values for solar pressure modes that have previously been observed in solar wind and terrestrial data, while others are the result of nonstationarity that distributes power across frequency. Overall, this paper documents the existence of two previously unrecognized sources of infragravity wave variability in the deep ocean.This work was supported at WHOI by an Independent Research and Development award and the Walter A. and Hope Noyes Smith Chair for Excellence in Oceanography. At the University of Hawaii, Martin Guiles provided a number of consequential data analyses, and work was supported by NSF‐OCE1460022. D. J. T. acknowledges support from Queen's University and NSERC. The data used in this study are available from the supporting information.2019-08-2

    Ionospheric scintillation studies

    Get PDF
    The diffracted field of a monochromatic plane wave was characterized by two complex correlation functions. For a Gaussian complex field, these quantities suffice to completely define the statistics of the field. Thus, one can in principle calculate the statistics of any measurable quantity in terms of the model parameters. The best data fits were achieved for intensity statistics derived under the Gaussian statistics hypothesis. The signal structure that achieved the best fit was nearly invariant with scintillation level and irregularity source (ionosphere or solar wind). It was characterized by the fact that more than 80% of the scattered signal power is in phase quadrature with the undeviated or coherent signal component. Thus, the Gaussian-statistics hypothesis is both convenient and accurate for channel modeling work

    Ionospheric Multi-Spacecraft Analysis Tools

    Get PDF
    This open access book provides a comprehensive toolbox of analysis techniques for ionospheric multi-satellite missions. The immediate need for this volume was motivated by the ongoing ESA Swarm satellite mission, but the tools that are described are general and can be used for any future ionospheric multi-satellite mission with comparable instrumentation. In addition to researching the immediate plasma environment and its coupling to other regions, such a mission aims to study the Earth’s main magnetic field and its anomalies caused by core, mantle, or crustal sources. The parameters for carrying out this kind of work are examined in these chapters. Besides currents, electric fields, and plasma convection, these parameters include ionospheric conductance, Joule heating, neutral gas densities, and neutral winds.

    Improved SuperDARN radar signal processing: A first principles statistical approach for reliable measurement uncertainties and enhanced data products

    Get PDF
    Ground-based radar systems are the best way to continuously monitor medium-to-large-scale features of the near-Earth space environment on a global scale. The Super Dual Auroral Radar Network (SuperDARN) radars are used to image the high-latitude ionospheric plasma circulation, which is produced by magnetosphere-ionosphere coupling processes generated by the interaction of both the solar and terrestrial magnetic fields. While investigating ways to expand the usable data products of SuperDARN to include electron density inferred using a multiple-frequency technique, it was determined that SuperDARN error estimates were lacking sufficient rigour. The method to calculate SuperDARN parameters was developed approximately 25 years ago when available computing resources were significantly less powerful, which required a number of simplifications to ensure both valid data and reasonable processing time. This resulted in very conservative criteria being applied to ensure valid data, but at the expense of both rigorous error analysis and the elimination of some otherwise valid data. With access to modern computing resources, the SuperDARN data processing methodology can be modernized to provide proper error estimates for the SuperDARN parameters (power, drift velocity, width). This research has resulted in 3 publications, which are presented here as Chapters 5, 6, and 7. The error analysis started with a first principles analysis of the self-clutter generated by the multiple-pulse technique that is used to probe the ionosphere (Chapter 5). Next, the statistical properties of voltage fluctuations as measured by SuperDARN were studied and the variance of these measurements were derived (Chapter 6). Finally, the statistical error analysis was propagated to the standard SuperDARN data products using a new First-Principles Fitting Methodology (Chapter 7). These results can be applied to all previously recorded SuperDARN data and have shown a practical increase in data of >50%. This has significant impact on the SuperDARN and space science communities with respect to, for example, global convection maps and their use in global modelling efforts. These results also enable quantitative experiment design facilitating research into using SuperDARN to provide electron density measurements, with a preliminary investigation using the new SuperDARN fitting methodology presented in Chapter 8

    Orbital Effects in Spaceborne Synthetic Aperture Radar Interferometry

    Get PDF
    This book reviews and investigates orbit-related effects in synthetic aperture Radar interferometry (InSAR). The translation of orbit inaccuracies to error signals in the interferometric phase is concisely described; estimation and correction approaches are discussed and evaluated with special focus on network adjustment of redundantly estimated baseline errors. Moreover, the effect of relative motion of the orbit reference frame is addressed

    Modification and preservation of environmental signals in speleothems

    Get PDF
    Speleothems are primarily studied in order to generate archives of climatic change and results have led to significant advances in identifying and dating major shifts in the climate system. However, the climatological meaning of many speleothem records cannot be interpreted unequivocally; this is particularly so for more subtle shifts and shorter time periods, but the use of multiple proxies and improving understanding of formation mechanisms offers a clear way forward. An explicit description of speleothem records as time series draws attention to the nature and importance of the signal filtering processes by which the weather, the seasons and longer-term climatic and other environmental fluctuations become encoded in speleothems. We distinguish five sources of variation that influence speleothem geochemistry: atmospheric, vegetation/soil, karstic aquifer, primary speleothem crystal growth and secondary alteration and give specific examples of their influence. The direct role of climate diminishes progressively through these five factors. \ud \ud We identify and review a number of processes identified in recent and current work that bear significantly on the conventional interpretation of speleothem records, for example: \ud \ud 1) speleothem geochemistry can vary seasonally and hence a research need is to establish the proportion of growth attributable to different seasons and whether this varies over time. \ud \ud 2) whereas there has traditionally been a focus on monthly mean Ã�´18O data of atmospheric moisture, current work emphasizes the importance of understanding the synoptic processes that lead to characteristic isotope signals, since changing relative abundance of different weather types might 1Corresponding author, fax +44(0)1214145528, E-mail: [email protected] control their variation on the longer-term. \ud \ud 3) the ecosystem and soil zone overlying the cave fundamentally imprint the carbon and trace element signals and can show characteristic variations with time. \ud \ud 4) new modelling on aquifer plumbing allows quantification of the effects of aquifer mixing. \ud \ud 5) recent work has emphasized the importance and seasonal variability of CO2-degassing leading to calcite precipitation upflow of a depositional site on carbon isotope and trace element composition of speleothems. \ud \ud 6) Although much is known about the chemical partitioning between water and stalagmites, variability in relation to crystal growth mechanisms and kinetics is a research frontier. \ud \ud 7) Aragonite is susceptible to conversion to calcite with major loss of chemical information, but the controls on the rate of this process are obscure. \ud \ud Analytical factors are critical to generate high-resolution speleothem records. A variety of methods of trace element analysis are available, but standardization is a common problem with the most rapid methods. New stable isotope data on Irish stalagmite CC3 compares rapid laser-ablation techniques with the conventional analysis of micromilled powders and ion microprobe methods. A high degree of comparability between techniques for Ã�´18O is found on the mm-cm scale, but a previously described high-amplitude oxygen isotope excursion around 8.3 ka is identified as an analytical artefact related to fractionation of the laser-analysis associated with sample cracking. High-frequency variability of not less than 0.5o/oo may be an inherent feature of speleothem Ã�´18O records

    Radar studies of the moon Quarterly progress report no. 2, 1 Feb. - 30 Apr. 1966

    Get PDF
    Radar study of lunar surface - scattering of radio waves, polarization observations, shadowing effect on wave backscattering, and computer program for Haystack radar mappin

    Electromagnetic induction studies in the Italian Alps

    Get PDF
    SIGLEAvailable from British Library Document Supply Centre- DSC:DX84139 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Statistical mechanics and information-theoretic perspectives on complexity in the Earth system

    Get PDF
    This review provides a summary of methods originated in (non-equilibrium) statistical mechanics and information theory, which have recently found successful applications to quantitatively studying complexity in various components of the complex system Earth. Specifically, we discuss two classes of methods: (i) entropies of different kinds (e.g., on the one hand classical Shannon and R´enyi entropies, as well as non-extensive Tsallis entropy based on symbolic dynamics techniques and, on the other hand, approximate entropy, sample entropy and fuzzy entropy); and (ii) measures of statistical interdependence and causality (e.g., mutual information and generalizations thereof, transfer entropy, momentary information transfer). We review a number of applications and case studies utilizing the above-mentioned methodological approaches for studying contemporary problems in some exemplary fields of the Earth sciences, highlighting the potentials of different techniques
    corecore