14,368 research outputs found

    Model-based Most Specific Concepts in Description Logics with Value Restrictions

    Get PDF
    Non-standard inferences are particularly useful in the bottom-up construction of ontologies in description logics. One of the more common non-standard reasoning tasks is the most specific concept (msc) for an ABox-individual. In this paper we present similar non-standard reasoning task: most specific concepts for models (model-mscs). We show that, although they look similar to ABox-mscs their computational behaviour can be different. We present constructions for model-mscs in FL₀ and FLE with cyclic TBoxes and for ALC∪∗ with acyclic TBoxes. Since subsumption in FLE with cyclic TBoxes has not been examined previously, we present a characterization of subsumption and give a construction for the least common subsumer in this setting

    The instance problem and the most specific concept in the description logic EL w.r.t. terminological cycles with descriptive semantics

    Get PDF
    In two previous reports we have investigated both standard and non-standard inferences in the presence of terminological cycles for the description logic EL, which allows for conjunctions, existential restrictions, and the top concept. Regarding standard inference problems, it was shown there that the subsumption problem remains polynomial for all three types of semantics usually considered for cyclic definitions in description logics, and that the instance problem remains polynomial for greatest fixpoint semantics. Regarding non-standard inference problems, it was shown that, w.r.t. greatest fixpoint semantics, the least common subsumer and the most specific concept always exist and can be computed in ploynomial time, and that, w.r.t. descriptive semantics, the least common subsumer need not exist. The present report is concerned with two problems left open by this previous work, namely the instance problem and the problem of computing most specific concepts w.r.t. descriptive semantics, which is the usual first-order semantics for description logic. We will show that the instance problem is polynomial also in this context. Similar to the case of the least common subsumer, the most specific concept w.r.t. descriptive semantics need not exist, but we are able to characterize the cases in which it exists and give a decidable sufficient condition for the existence of the most specific concept. Under this condition, it can be computed in polynomial time

    Optimizing the computation of overriding

    Full text link
    We introduce optimization techniques for reasoning in DLN---a recently introduced family of nonmonotonic description logics whose characterizing features appear well-suited to model the applicative examples naturally arising in biomedical domains and semantic web access control policies. Such optimizations are validated experimentally on large KBs with more than 30K axioms. Speedups exceed 1 order of magnitude. For the first time, response times compatible with real-time reasoning are obtained with nonmonotonic KBs of this size

    mini me swift the first mobile owl reasoner for ios

    Get PDF
    Mobile reasoners play a pivotal role in the so-called Semantic Web of Things. While several tools exist for the Android platform, iOS has been neglected so far. This is due to architectural differences and unavailability of OWL manipulation libraries, which make porting existing engines harder. This paper presents Mini-ME Swift, the first Description Logics reasoner for iOS. It implements standard (Subsumption, Satisfiability, Classification, Consistency) and non-standard (Abduction, Contraction, Covering, Difference) inferences in an OWL 2 fragment. Peculiarities are discussed and performance results are presented, comparing Mini-ME Swift with other state-of-the-art OWL reasoners

    Standard and Non-standard reasoning in Description Logics

    Get PDF
    The present work deals with Description Logics (DLs), a class of knowledge representation formalisms used to represent and reason about classes of individuals and relations between such classes in a formally well-defined way. We provide novel results in three main directions. (1) Tractable reasoning revisited: in the 1990s, DL research has largely answered the question for practically relevant yet tractable DL formalisms in the negative. Due to novel application domains, especially the Life Sciences, and a surprising tractability result by Baader, we have re-visited this question, this time looking in a new direction: general terminologies (TBoxes) and extensions thereof defined over the DL EL and extensions thereof. As main positive result, we devise EL++(D)-CBoxes as a tractable DL formalism with optimal expressivity in the sense that every additional standard DL constructor, every extension of the TBox formalism, or every more powerful concrete domain, makes reasoning intractable. (2) Non-standard inferences for knowledge maintenance: non-standard inferences, such as matching, can support domain experts in maintaining DL knowledge bases in a structured and well-defined way. In order to extend their availability and promote their use, the present work extends the state of the art of non-standard inferences both w.r.t. theory and implementation. Our main results are implementations and performance evaluations of known matching algorithms for the DLs ALE and ALN, optimal non-deterministic polynomial time algorithms for matching under acyclic side conditions in ALN and sublanguages, and optimal algorithms for matching w.r.t. cyclic (and hybrid) EL-TBoxes. (3) Non-standard inferences over general concept inclusion (GCI) axioms: the utility of GCIs in modern DL knowledge bases and the relevance of non-standard inferences to knowledge maintenance naturally motivate the question for tractable DL formalism in which both can be provided. As main result, we propose hybrid EL-TBoxes as a solution to this hitherto open question

    Remarks on logic for process descriptions in ontological reasoning: A Drug Interaction Ontology case study

    Get PDF
    We present some ideas on logical process descriptions, using relations from the DIO (Drug Interaction Ontology) as examples and explaining how these relations can be naturally decomposed in terms of more basic structured logical process descriptions using terms from linear logic. In our view, the process descriptions are able to clarify the usual relational descriptions of DIO. In particular, we discuss the use of logical process descriptions in proving linear logical theorems. Among the types of reasoning supported by DIO one can distinguish both (1) basic reasoning about general structures in reality and (2) the domain-specific reasoning of experts. We here propose a clarification of this important distinction between (realist) reasoning on the basis of an ontology and rule-based inferences on the basis of an expert’s view

    A strengthening of rational closure in DLs: reasoning about multiple aspects

    Full text link
    We propose a logical analysis of the concept of typicality, central in human cognition (Rosch,1978). We start from a previously proposed extension of the basic Description Logic ALC (a computationally tractable fragment of First Order Logic, used to represent concept inclusions and ontologies) with a typicality operator T that allows to consistently represent the attribution to classes of individuals of properties with exceptions (as in the classic example (i) typical birds fly, (ii) penguins are birds but (iii) typical penguins don't fly). We then strengthen this extension in order to separately reason about the typicality with respect to different aspects (e.g., flying, having nice feather: in the previous example, penguins may not inherit the property of flying, for which they are exceptional, but can nonetheless inherit other properties, such as having nice feather)

    A Semantic Similarity Measure for Expressive Description Logics

    Full text link
    A totally semantic measure is presented which is able to calculate a similarity value between concept descriptions and also between concept description and individual or between individuals expressed in an expressive description logic. It is applicable on symbolic descriptions although it uses a numeric approach for the calculus. Considering that Description Logics stand as the theoretic framework for the ontological knowledge representation and reasoning, the proposed measure can be effectively used for agglomerative and divisional clustering task applied to the semantic web domain.Comment: 13 pages, Appeared at CILC 2005, Convegno Italiano di Logica Computazionale also available at http://www.disp.uniroma2.it/CILC2005/downloads/papers/15.dAmato_CILC05.pd
    • …
    corecore