112 research outputs found

    ๋น„๋ฉดํ—ˆ๋Œ€์—ญ ์…€๋ฃฐ๋ผ ํ†ต์‹ ์„ ์œ„ํ•œ ์„ฑ๋Šฅ ํ–ฅ์ƒ ๊ธฐ๋ฒ•

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ •๋ณด๊ณตํ•™๋ถ€, 2021.8. ๋ฐ•์„ธ์›….The 3rd generation partnership project (3GPP) has standardized long-term evolution (LTE) licensed-assisted access (LTE-LAA) that uses a wide unlicensed band as an alternative solution to the insufficient bandwidth problem of the existing LTE. 3GPP cellular communications in unlicensed spectrum allow transmission only after completing listen-before-talk (LBT) operation. For downlink, the LBT operation helps cellular traffic to coexist well with Wi-Fi traffic. However, cellular uplink transmission is attempted only at the time specifically determined by the base station after having a successful LBT and the user equipment (UE) may suffer transmission failure and delayed transmission due to Wi-Fi interference. As a result, cellular uplink traffic does not coexist well with Wi-Fi traffic. NR-U suffers from the collision issue because its channel access mechanism is similar to that of Wi-Fi. Wi-Fi solves the collision problem through the request-to-send/clear-to-send (RTS/CTS) mechanism. However, NR-U has no way of solving the collision problem. As a result, NR-U suffers severe performance degradation due to collisions as the number of contending nodes increases. In this dissertation, we consider the following two enhancements to cellular communication in the unlicensed spectrum: (i) Uplink channel access enhancement for solving poor uplink performance and (ii) collision minimization for efficient channel utilization. First, we mathematically analyze the problem of unfairness between cellular and Wi-Fi for uplink channel access. To address the coexistence problem in unlicensed spectrum, we propose a standard-compliant approach, termed UpChance, which allows the UE to use a minimum length of uplink reservation signal (RS) and the base station to determine the optimal timing for the UE's uplink transmission. Through ns-3 simulation, we verify that UpChance improves the performance of fairness and random access completion time by up to 88% and 99%, respectively. Second, we propose to extend an RS duration and use a split RS for reservation in NR-U that consists of front RS and rear RS and design a new collision minimization scheme, termed R-SplitC, that contains two components: new split RS operation and contention window size (CWS) control. New split RS operation helps to minimize collisions in NR-U transmissions, and CWS control works to protect the performance of other communication technologies such as Wi-Fi. We mathematically analyze and evaluate the performance of our scheme and confirm that R-SplitC improves network throughput by up to 100.6% compared to the baseline RS scheme without degrading Wi-Fi performance. In summary, we propose standard-compliant uplink channel access enhancement scheme and collision minimization scheme for cellular communication in unlicensed spectrum. Through this research, we achieve enhancements of network performance such as throughput and fairness.3์„ธ๋Œ€ ํŒŒํŠธ๋„ˆ์‹ญ ํ”„๋กœ์ ํŠธ๋Š” ๊ธฐ์กด LTE์˜ ๋ถ€์กฑํ•œ ๋Œ€์—ญํญ ๋ฌธ์ œ์— ๋Œ€ํ•œ ๋Œ€์•ˆ์œผ๋กœ ๋„“์€ ๋น„๋ฉดํ—ˆ ๋Œ€์—ญ์„ ์‚ฌ์šฉํ•˜๋Š” ๋ผ์ด์„ ์Šค ์ง€์› ์ ‘์†์„ ํ‘œ์ค€ํ™”ํ•˜๊ณ  ์žˆ๋‹ค. ๋น„๋ฉดํ—ˆ ๋Œ€์—ญ์—์„œ 3GPP ์…€๋ฃฐ๋Ÿฌ ํ†ต์‹ ์€ LBT ๋™์ž‘์„ ์™„๋ฃŒํ•œ ํ›„์—๋งŒ ์ „์†ก์„ ํ—ˆ์šฉํ•œ๋‹ค. ๋‹ค์šด๋งํฌ์˜ ๊ฒฝ์šฐ LBT ์ž‘์—…์„ ํ†ตํ•ด ์…€๋ฃฐ๋Ÿฌ ํŠธ๋ž˜ํ”ฝ์ด ์™€์ดํŒŒ์ด ํŠธ๋ž˜ํ”ฝ๊ณผ ์ž˜ ๊ณต์กดํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜, ์…€๋ฃฐ๋Ÿฌ ์—…๋งํฌ ์ „์†ก์€ LBT ์„ฑ๊ณต ํ›„ ๊ธฐ์ง€๊ตญ์— ์˜ํ•ด ํŠน๋ณ„ํžˆ ๊ฒฐ์ •๋œ ์‹œ๊ฐ„์—๋งŒ ์‹œ๋„๋˜๋ฉฐ, ์‚ฌ์šฉ์ž ์žฅ๋น„๋Š” ์™€์ดํŒŒ์ด์˜ ๊ฐ„์„ญ์œผ๋กœ ์ธํ•ด ์ „์†ก ์‹คํŒจ์™€ ์ „์†ก ์ง€์—ฐ์„ ๊ฒช์„ ํ™•๋ฅ ์ด ๋†’๋‹ค. ๋”ฐ๋ผ์„œ ์…€๋ฃฐ๋Ÿฌ ์—…๋งํฌ ํŠธ๋ž˜ํ”ฝ์ด ์™€์ดํŒŒ์ด ํŠธ๋ž˜ํ”ฝ๊ณผ ์ž˜ ๊ณต์กดํ•˜์ง€ ๋ชปํ•œ๋‹ค. ๋ผ์ด์„ ์Šค ์ง€์› ์ ‘์† ๊ธฐ์ˆ ์€ ๋˜ํ•œ ์ฑ„๋„ ์•ก์„ธ์Šค ๋ฉ”์ปค๋‹ˆ์ฆ˜์ด ์™€์ดํŒŒ์ด์˜ ์ฑ„๋„ ์•ก์„ธ์Šค ๋ฉ”์ปค๋‹ˆ์ฆ˜๊ณผ ์œ ์‚ฌํ•˜๊ธฐ ๋•Œ๋ฌธ์— ๋™์‹œ ์ „์†ก์œผ๋กœ ์ถฉ๋Œ ๋ฌธ์ œ๋ฅผ ๊ฒช๊ณ  ์žˆ๋‹ค. ์™€์ดํŒŒ์ด๋Š” RTS/CTS ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ํ†ตํ•ด ์ถฉ๋Œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ํ˜„์žฌ ๋ผ์ด์„ ์Šค ์ง€์› ์ ‘์† ๊ธฐ์ˆ ์€ ์ถฉ๋Œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•  ๋ฐฉ๋ฒ•์ด ์กด์žฌํ•˜์ง€ ์•Š๋Š”๋‹ค. ๋”ฐ๋ผ์„œ ๋ผ์ด์„ ์Šค ์ง€์› ์ ‘์† ๊ธฐ์ˆ ์€ ๊ฒฝํ•ฉ ๋…ธ๋“œ ์ˆ˜๊ฐ€ ์ฆ๊ฐ€ํ•จ์— ๋”ฐ๋ผ ์ถฉ๋Œ๋กœ ์ธํ•ด ์‹ฌ๊ฐํ•œ ์„ฑ๋Šฅ ์ €ํ•˜๋ฅผ ๊ฒช๋Š”๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๋น„๋ฉดํ—ˆ ๋Œ€์—ญ์—์„œ ์…€๋ฃฐ๋Ÿฌ ํ†ต์‹ ์— ๋Œ€ํ•œ ๋‹ค์Œ๊ณผ ๊ฐ™์€ ๋‘ ๊ฐ€์ง€ ๊ฐœ์„ ์„ ๊ณ ๋ คํ•œ๋‹ค. (i) ์—…๋งํฌ ์„ฑ๋Šฅ ์ €ํ•˜๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•œ ์—…๋งํฌ ์ฑ„๋„ ์•ก์„ธ์Šค ํ–ฅ์ƒ ๋ฐ (ii) ํšจ์œจ์ ์ธ ์ฑ„๋„ ํ™œ์šฉ์„ ์œ„ํ•œ ์ถฉ๋Œ ์ตœ์†Œํ™”. ์ฒซ์งธ, ์—…๋งํฌ ์ฑ„๋„ ์•ก์„ธ์Šค๋ฅผ ์œ„ํ•œ ์…€๋ฃฐ๋Ÿฌ์™€ ์™€์ดํŒŒ์ด ์‚ฌ์ด์˜ ๋ถˆ๊ณต์ •์„ฑ ๋ฌธ์ œ๋ฅผ ์ˆ˜ํ•™์ ์œผ๋กœ ๋ถ„์„ํ•œ๋‹ค. ๋น„๋ฉดํ—ˆ ๋Œ€์—ญ์—์„œ์˜ ๊ณต์กด ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด, ์šฐ๋ฆฌ๋Š” ๋‹จ๋ง์ด ์ตœ์†Œ ๊ธธ์ด์˜ ์—…๋งํฌ ์˜ˆ์•ฝ ์‹ ํ˜ธ๋ฅผ ์‚ฌ์šฉํ•˜๊ณ  ๊ธฐ์ง€๊ตญ์ด ๋‹จ๋ง์˜ ์—…๋งํฌ ์ „์†ก์— ๋Œ€ํ•œ ์ตœ์ ์˜ ํƒ€์ด๋ฐ์„ ๊ฒฐ์ •ํ•  ์ˆ˜ ์žˆ๋Š” UpChance๋ผ๋Š” ํ‘œ์ค€์„ ๋งŒ์กฑํ•˜๋Š” ์ƒํ–ฅ ๋งํฌ ์ฑ„๋„ ์ ‘๊ทผ ๋ฐฉ์‹์„ ์ œ์•ˆํ•œ๋‹ค. ns-3 ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ํ†ตํ•ด UpChance๊ฐ€ ๊ณต์ •์„ฑ๊ณผ ๋žœ๋ค ์•ก์„ธ์Šค ์™„๋ฃŒ ์‹œ๊ฐ„์„ ๊ฐ๊ฐ ์ตœ๋Œ€ 88%, 99% ํ–ฅ์ƒ์‹œํ‚ค๋Š” ๊ฒƒ์„ ๊ฒ€์ฆํ•œ๋‹ค. ๋‘˜์งธ, ์šฐ๋ฆฌ๋Š” ์ „๋ฐฉ ์˜ˆ์•ฝ์‹ ํ˜ธ์™€ ํ›„๋ฐฉ ์˜ˆ์•ฝ์‹ ํ˜ธ๋กœ ๊ตฌ์„ฑ๋œ ๋ถ„ํ•  ์˜ˆ์•ฝ ์‹ ํ˜ธ๋ฅผ ์‚ฌ์šฉํ•˜๊ณ  ๊ฒฝํ•ฉ ์ฐฝ ํฌ๊ธฐ๋ฅผ ์ถ”๊ฐ€์ ์œผ๋กœ ์ œ์–ดํ•˜๋Š” R-SplitC๋ผ๋Š” ์ƒˆ๋กœ์šด ์ถฉ๋Œ ์ตœ์†Œํ™” ์ฒด๊ณ„๋ฅผ ์ œ์•ˆํ•œ๋‹ค. ์ƒˆ๋กœ์šด ๋ถ„ํ•  ์˜ˆ์•ฝ ์‹ ํ˜ธ๋Š” ๋ผ์ด์„ ์Šค ์ง€์› ์ ‘์† ๊ธฐ์ˆ ์˜ ์ „์†ก๊ฐ„์˜ ์ถฉ๋Œ์„ ์ตœ์†Œํ™”ํ•˜๋Š” ๋ฐ ๋„์›€์„ ์ฃผ๋ฉฐ, ๊ฒฝํ•ฉ ์ฐฝ ํฌ๊ธฐ ์ œ์–ด๋Š” ์™€์ดํŒŒ์ด์™€ ๊ฐ™์€ ๋‹ค๋ฅธ ํ†ต์‹  ๊ธฐ์ˆ ์˜ ์„ฑ๋Šฅ์„ ๋ณดํ˜ธํ•œ๋‹ค. ์šฐ๋ฆฌ๋Š” ์šฐ๋ฆฌ ์ฒด๊ณ„์˜ ์„ฑ๋Šฅ์„ ์ˆ˜ํ•™์ ์œผ๋กœ ๋ถ„์„ํ•˜๊ณ  ํ‰๊ฐ€ํ•˜์—ฌ R-SplitC๊ฐ€ ์™€์ดํŒŒ์ด ์„ฑ๋Šฅ์„ ์ €ํ•˜์‹œํ‚ค์ง€ ์•Š๊ณ  ๊ธฐ์กด์˜ ์˜ˆ์•ฝ ์‹ ํ˜ธ ์ฒด๊ณ„์— ๋น„ํ•ด ๋„คํŠธ์›Œํฌ ์ฒ˜๋ฆฌ๋Ÿ‰์„ ์ตœ๋Œ€ 100.6% ํ–ฅ์ƒ์‹œํ‚ค๋Š” ๊ฒƒ์„ ํ™•์ธํ•œ๋‹ค. ์š”์•ฝํ•˜๋ฉด, ์šฐ๋ฆฌ๋Š” ๋น„๋ฉดํ—ˆ ๋Œ€์—ญ์—์„œ ์…€๋ฃฐ๋Ÿฌ ํ†ต์‹ ์„ ์œ„ํ•œ ์—…๋งํฌ ์ฑ„๋„ ์•ก์„ธ์Šค ํ–ฅ์ƒ ๊ธฐ๋ฒ• ๋ฐ ์ถฉ๋Œ ์ตœ์†Œํ™” ๊ธฐ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋ฅผ ํ†ตํ•ด, ์šฐ๋ฆฌ๋Š” ์ตœ์ฒจ๋‹จ ๊ธฐ์ˆ ์— ๋น„ํ•ด ์ฒ˜๋ฆฌ๋Ÿ‰ ๋ฐ ๊ณต์ •์„ฑ๊ณผ ๊ฐ™์€ ๋„คํŠธ์›Œํฌ ์„ฑ๋Šฅ์˜ ํ–ฅ์ƒ์„ ๋‹ฌ์„ฑํ•œ๋‹ค.1 Introduction 1 1.1 Motivation 1 1.2 Main Contributions 2 1.2.1 Uplink Channel Access Enhancement for Cellular Communication in Unlicensed Spectrum 2 1.2.2 R-SplitC: Collision Minimization for Cellular Communication in Unlicensed Spectrum 3 1.3 Organization of the Dissertation 4 2 Uplink Channel Access Enhancement for Cellular Communication in Unlicensed Spectrum 5 2.1 Introduction 5 2.2 Related Work and Preliminaries 7 2.2.1 Related Work 7 2.2.2 Preliminaries 8 2.3 Mathematical Analysis for Unfairness between Uplink Cellular and Wi-Fi 10 2.3.1 PRACH scenario 10 2.3.2 UL data scenario 13 2.4 Proposed Scheme 17 2.4.1 UE Operation 18 2.4.2 eNB Operation 19 2.5 Performance Evaluation 24 2.5.1 Simulation Environments 24 2.5.2 UL data transmission 25 2.5.3 Random access 27 2.6 Summary 29 3 R-SplitC: Collision Minimization for Cellular Communication in Unlicensed Spectrum 37 3.1 Introduction 37 3.2 Related Work and Preliminaries 39 3.2.1 Related Work 39 3.2.2 NR-U 40 3.2.3 listen-before-talk (LBT) 41 3.2.4 reservation signal and mini-slot 41 3.2.5 Wi-Fi 42 3.3 Proposed Scheme 44 3.3.1 New RS structure 46 3.3.2 CWS control 48 3.4 Performance Analysis 49 3.4.1 Throughput Analysis for R-Split 49 3.4.2 Throughput Analysis for R-SplitC 55 3.5 Performance Evaluation 57 3.5.1 Performance Evaluation for an NR-U only Network 58 3.5.2 Performance Evaluation for an NR-U/Wi-Fi Network 61 3.6 Summary 65 4 Concluding Remarks 67 4.1 Research Contributions 67 4.2Future Work 68 Abstract (In Korean) 75 ๊ฐ์‚ฌ์˜๊ธ€ 78๋ฐ•

    Wi-Fi Coexistence with Duty Cycled LTE-U

    Full text link
    Coexistence of Wi-Fi and LTE-Unlicensed (LTE-U) technologies has drawn significant concern in industry. In this paper, we investigate the Wi-Fi performance in the presence of duty cycle based LTE-U transmission on the same channel. More specifically, one LTE-U cell and one Wi-Fi basic service set (BSS) coexist by allowing LTE-U devices transmit their signals only in predetermined duty cycles. Wi-Fi stations, on the other hand, simply contend the shared channel using the distributed coordination function (DCF) protocol without cooperation with the LTE-U system or prior knowledge about the duty cycle period or duty cycle of LTE-U transmission. We define the fairness of the above scheme as the difference between Wi-Fi performance loss ratio (considering a defined reference performance) and the LTE-U duty cycle (or function of LTE-U duty cycle). Depending on the interference to noise ratio (INR) being above or below -62dbm, we classify the LTE-U interference as strong or weak and establish mathematical models accordingly. The average throughput and average service time of Wi-Fi are both formulated as functions of Wi-Fi and LTE-U system parameters using probability theory. Lastly, we use the Monte Carlo analysis to demonstrate the fairness of Wi-Fi and LTE-U air time sharing

    Coexistence Performance and Limits of Frame-Based Listen-Before-Talk

    Full text link

    ๋น„๋ฉดํ—ˆ๋Œ€์—ญ ์…€๋ฃฐ๋ผ ํ†ต์‹ ์˜ ์„ฑ๋Šฅ ๋ถ„์„ ๋ฐ ์„ฑ๋Šฅ ํ–ฅ์ƒ ๊ธฐ๋ฒ• ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ •๋ณด๊ณตํ•™๋ถ€, 2021. 2. ๋ฐ•์„ธ์›….3GPP๋Š” LAA (licensed-assisted access)๋ผ๊ณ ํ•˜๋Š” 5GHz ๋น„๋ฉดํ—ˆ ๋Œ€์—ญ LTE๋ฅผ ๊ฐœ๋ฐœํ–ˆ์Šต๋‹ˆ๋‹ค. LAA๋Š” ์ถฉ๋Œ ๋ฐฉ์ง€ ๊ธฐ๋Šฅ์„ ์‚ฌ์šฉํ•˜๊ธฐ ์œ„ํ•ด Wi-Fi์˜ CSMA / CA (Carrier Sense Multiple Access with Collision avoidance)์™€ ์œ ์‚ฌํ•œ LBT (Listen Before Talk) ์ž‘์—…์„ ์ฑ„ํƒํ•˜์—ฌ ๊ฐ LAA ๋‹ค์šด ๋งํฌ ๋ฒ„์ŠคํŠธ์˜ ํ”„๋ ˆ์ž„ ๊ตฌ์กฐ ์˜ค๋ฒ„ ํ—ค๋“œ๋Š” ๊ฐ๊ฐ์˜ ์ข…๋ฃŒ ์‹œ๊ฐ„์— ๋”ฐ๋ผ ๋‹ฌ๋ผ์ง‘๋‹ˆ๋‹ค. ์ด์ „ LBT ์ž‘์—…. ์ด ๋…ผ๋ฌธ์—์„œ๋Š” ๋น„๋ฉดํ—ˆ ๋Œ€์—ญ ์…€๋ฃฐ๋Ÿฌ ํ†ต์‹ ์„ ๋ถ„์„ํ•˜๊ธฐ์œ„ํ•œ ์ˆ˜์น˜ ๋ชจ๋ธ์„ ์ œ์•ˆํ•œ๋‹ค. ๋‹ค์Œ์œผ๋กœ, ๋น„๋ฉดํ—ˆ ๋Œ€์—ญ ์…€๋ฃฐ๋Ÿฌ ํ†ต์‹ ์˜ ๋‹ค์Œ ๋‘ ๊ฐ€์ง€ ํ–ฅ์ƒ๋œ ๊ธฐ๋Šฅ์„ ๊ณ ๋ คํ•ฉ๋‹ˆ๋‹ค. ๋Œ€์—ญ ๋…๋ฆฝํ˜• ์…€๋ฃฐ๋Ÿฌ ํ†ต์‹ . ๊ธฐ์กด WiFi ๋ถ„์„ ๋ชจ๋ธ๋กœ๋Š” LAA์˜ ์„ฑ๋Šฅ์„ ํ‰๊ฐ€ํ•  ์ˆ˜ ์—†๋‹ค๋Š” ์ ์„ ๊ฐ์•ˆํ•˜์—ฌ ๋ณธ ์„œ์‹ ์—์„œ๋Š” ์—ฌ๋Ÿฌ ๊ฒฝํ•ฉ ์ง„ํ™” ๋œ NodeB๋กœ ๊ตฌ์„ฑ๋œ LAA ๋„คํŠธ์›Œํฌ์˜ ์„ฑ๋Šฅ์„ ๋ถ„์„ํ•˜๊ธฐ์œ„ํ•œ ์ƒˆ๋กœ์šด Markov ์ฒด์ธ ๊ธฐ๋ฐ˜ ๋ถ„์„ ๋ชจ๋ธ์„ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค. LAA ํ”„๋ ˆ์ž„ ๊ตฌ์กฐ ์˜ค๋ฒ„ ํ—ค๋“œ์˜ ๋ณ€ํ˜•. LTE-LAA๋Š” LTE์—์„œ ์ƒ์† ๋œ ์†๋„ ์ ์‘ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์œ„ํ•ด ์ ์‘ ๋ณ€์กฐ ๋ฐ ์ฝ”๋”ฉ (AMC) ์„ ์ฑ„ํƒํ•ฉ๋‹ˆ๋‹ค. AMC๋Š” ์ง„ํ™” ๋œ nodeB (eNB)๊ฐ€ ํ˜„์žฌ ์ „์†ก์˜ ์ฑ„๋„ ํ’ˆ์งˆ ํ‘œ์‹œ๊ธฐ ํ”ผ๋“œ ๋ฐฑ์„ ์‚ฌ์šฉํ•˜์—ฌ ๋‹ค์Œ ์ „์†ก์„์œ„ํ•œ ๋ณ€์กฐ ๋ฐ ์ฝ”๋”ฉ ๋ฐฉ์‹ (MCS)์„ ์„ ํƒํ•˜๋„๋ก ๋•์Šต๋‹ˆ๋‹ค. ๋ผ์ด์„ ์Šค ๋Œ€์—ญ์—์„œ ๋™์ž‘ํ•˜๋Š” ๊ธฐ์กด LTE์˜ ๊ฒฝ์šฐ ๋…ธ๋“œ ๊ฒฝํ•ฉ ๋ฌธ์ œ๊ฐ€ ์—†์œผ๋ฉฐ AMC ์„ฑ๋Šฅ ์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๊ฐ€ ์ž˜ ์ง„ํ–‰๋˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๋น„๋ฉดํ—ˆ ๋Œ€์—ญ์—์„œ ๋™์ž‘ํ•˜๋Š” LTE-LAA ์˜ ๊ฒฝ์šฐ ์ถฉ๋Œ ๋ฌธ์ œ๋กœ ์ธํ•ด AMC ์„ฑ๋Šฅ์ด ์ œ๋Œ€๋กœ ์ฒ˜๋ฆฌ๋˜์ง€ ์•Š์•˜์Šต๋‹ˆ๋‹ค. ์ด ํŽธ์ง€์—์„œ๋Š” AMC ์šด์˜์„ ๊ณ ๋ คํ•œ ํ˜„์‹ค์ ์ธ ์ฑ„๋„ ๋ชจ๋ธ์—์„œ LTELAA ์„ฑ๋Šฅ์„ ๋ถ„์„ํ•˜๊ธฐ์œ„ํ•œ ์ƒˆ๋กœ ์šด Markov ์ฒด์ธ ๊ธฐ๋ฐ˜ ๋ถ„์„ ๋ชจ๋ธ์„ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค. ๋ฌด์„  ๋„คํŠธ์›Œํฌ ๋ถ„์„์— ๋„๋ฆฌ ์‚ฌ์šฉ๋˜๋Š” Rayleigh ํŽ˜์ด๋”ฉ ์ฑ„๋„ ๋ชจ๋ธ์„ ์ฑ„ํƒํ•˜๊ณ  ๋ถ„์„ ๊ฒฐ๊ณผ๋ฅผ ns-3 ์‹œ๋ฎฌ๋ ˆ์ดํ„ฐ์—์„œ ์–ป์€ ๊ฒฐ๊ณผ ์™€ ๋น„๊ตํ•ฉ๋‹ˆ๋‹ค. ๋น„๊ต ๊ฒฐ๊ณผ๋Š” ํ‰๊ท  ์ •ํ™•๋„๊ฐ€ 99.5%๋กœ ๋ถ„์„ ๋ชจ๋ธ์˜ ์ •ํ™•๋„๋ฅผ ๋ณด์—ฌ์ค๋‹ˆ๋‹ค. ๋†’์€ ๋ฐ์ดํ„ฐ ์†๋„์— ๋Œ€ํ•œ ์š”๊ตฌ ์‚ฌํ•ญ์œผ๋กœ ์ธํ•ด 3GPP๋Š” LTE-LAA๋ฅผ์œ„ํ•œ ๋‹ค์ค‘ ๋ฐ˜์†กํŒŒ ์šด์˜์„ ์ œ๊ณตํ–ˆ์Šต๋‹ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๋‹ค์ค‘ ๋ฐ˜์†กํŒŒ ๋™์ž‘์€ OOBE์— ์ทจ์•ฝํ•˜๊ณ  ์ œํ•œ๋œ ์ „์†ก ์ „๋ ฅ์„ ์‚ฌ์šฉํ•˜์—ฌ ๋น„ํšจ์œจ์  ์ธ ์ฑ„๋„ ์‚ฌ์šฉ์„ ์ดˆ๋ž˜ํ•ฉ๋‹ˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์€ ์ฑ„๋„ ํšจ์œจ์„ ๋†’์ด๊ธฐ์œ„ํ•œ ์ƒˆ๋กœ์šด ๋‹ค์ค‘ ๋ฐ˜์†กํŒŒ ์ ‘๊ทผ ๋ฐฉ์‹์„ ์ œ์•ˆํ•œ๋‹ค. ์šฐ๋ฆฌ๊ฐ€ ์ œ์•ˆํ•œ ๋ฐฉ์‹์€ ์ „์†ก ๋ฒ„์ŠคํŠธ๋ฅผ ์—ฌ๋Ÿฌ ๊ฐœ๋กœ ๋ถ„ํ• ํ•˜๊ณ  ์ „์†ก ์ „๋ ฅ ์ œํ•œ์„ ์ถฉ์กฑํ•˜๋ฉด์„œ ์งง์€ ์„œ๋ธŒ ํ”„๋ ˆ์ž„ ์ „์†ก ์„ ์‚ฌ์šฉํ•ฉ๋‹ˆ๋‹ค. ๋˜ํ•œ ์ฑ„๋„ ์ƒํƒœ๋ฅผ ์ •ํ™•ํ•˜๊ฒŒ ํŒ๋‹จํ•˜์—ฌ OOBE ๋ฌธ์ œ๋ฅผ ๊ทน๋ณต ํ•  ์ˆ˜์žˆ๋Š” ์—๋„ˆ์ง€ ๊ฐ์ง€ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค. ์†Œํ”„ํŠธ์›จ์–ด ์ •์˜ ๋ผ๋””์˜ค๋ฅผ ์‚ฌ์šฉํ•˜๋Š” ํ”„๋กœํ†  ํƒ€์ž…์€ 99% ์ด์ƒ์˜ ์ •ํ™•๋„๋กœ ์ฑ„๋„ ์ƒํƒœ๋ฅผ ๊ฒฐ์ •ํ•˜๋Š” ์—๋„ˆ์ง€ ๊ฐ์ง€ ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ์‹คํ–‰ ๊ฐ€๋Šฅ์„ฑ๊ณผ ์„ฑ๋Šฅ์„ ๋ณด์—ฌ์ค๋‹ˆ๋‹ค. ns-3 ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ํ†ตํ•ด ์ œ์•ˆ ๋œ ๋‹ค์ค‘ ๋ฐ˜์†กํŒŒ ์•ก์„ธ์Šค ๋ฐฉ์‹์ด ๊ธฐ์กด LBT ์œ ํ˜• A ๋ฐ ์œ ํ˜• B์— ๋น„ํ•ด ์‚ฌ์šฉ์ž์ธ์ง€ ์ฒ˜๋ฆฌ๋Ÿ‰์—์„œ ๊ฐ๊ฐ ์ตœ๋Œ€ 59% ๋ฐ 21.5%์˜ ์„ฑ๋Šฅ ํ–ฅ์ƒ์„ ๋‹ฌ์„ฑ ํ•จ์„ ํ™•์ธํ–ˆ์Šต๋‹ˆ๋‹ค. ๋ ˆ๊ฑฐ์‹œ LAA์—๋Š” ๋ฐฐํฌ ๋ฌธ์ œ๊ฐ€ ์žˆ๊ธฐ ๋•Œ๋ฌธ์— 3GPP์™€ MulteFire ์–ผ๋ผ์ด์–ธ์Šค๋Š” ๋น„๋ฉดํ—ˆ ๋Œ€์—ญ ๋…๋ฆฝํ˜• ์…€๋ฃฐ๋Ÿฌ ํ†ต์‹  ์‹œ์Šค ํ…œ์„ ์ œ์•ˆํ–ˆ์Šต๋‹ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜, ์ข…๋ž˜์˜ ๋น„๋ฉดํ—ˆ ๋Œ€์—ญ ๋…๋ฆฝํ˜• ์…€๋ฃฐ๋Ÿฌ ํ†ต์‹  ์‹œ์Šคํ…œ์€ ์ƒํ–ฅ ๋งํฌ ์ œ์–ด ๋ฉ”์‹œ์ง€์˜ ์ „์†ก ํ™•๋ฅ ์ด ๋‚ฎ๋‹ค. ์ด ๋…ผ๋ฌธ์€ Wi-Fi ๋ธ”๋ก ACK ํ”„๋ ˆ์ž„์— ์—… ๋งํฌ ์ œ์–ด ๋ฉ”์‹œ์ง€๋ฅผ ๋„ฃ๋Š” W ARQ : Wi-Fi ์ง€์› HARQ๋ฅผ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค. ๋˜ํ•œ W-ARQ์˜ ์ฒ˜ ๋ฆฌ ์„ฑ๋Šฅ์„ ํ–ฅ์ƒ์‹œํ‚ค๊ธฐ ์œ„ํ•ด ๋ณ‘๋ ฌ HARQ ๋ฐ ํด๋Ÿฌ์Šคํ„ฐ๋ง ๋œ Minstrel์„ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค. ์šฐ๋ฆฌ๊ฐ€ ์ œ์•ˆํ•œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ๊ธฐ์กด MulteFire๊ฐ€ ๊ฑฐ์˜ ์ œ๋กœ ์ฒ˜๋ฆฌ๋Ÿ‰ ์„ฑ๋Šฅ์„ ๋ณด์ด๋Š” ๊ฒฝ์šฐ ๋†’์€ ์ฒ˜๋ฆฌ๋Ÿ‰ ์„ฑ๋Šฅ์„ ๋ณด์—ฌ์ค๋‹ˆ๋‹ค. ์š”์•ฝํ•˜๋ฉด ๋น„๋ฉดํ—ˆ ๋Œ€์—ญ ์…€๋ฃฐ๋Ÿฌ ํ†ต์‹ ์˜ ์„ฑ๋Šฅ์„ ๋ถ„์„ ํ•ฉ๋‹ˆ๋‹ค. ์ œ์•ˆ ๋œ ๋ชจ๋ธ์„ ์‚ฌ์šฉํ•จ์œผ๋กœ์จ ์šฐ๋ฆฌ๋Š” ๋ ˆ๊ฑฐ์‹œ ๋‹ค์ค‘ ๋ฐ˜์†กํŒŒ ๋™์ž‘์„ ์ฃผ์žฅํ•˜๋ฉฐ ๋น„๋ฉดํ—ˆ ์…€๋ฃฐ๋Ÿฌ ํ†ต์‹ ์˜ HARQ๋Š” ํšจ์œจ์ ์ด์ง€ ์•Š๋‹ค. ์ด๋Ÿฌํ•œ ์ด์œ ๋กœ, ์šฐ๋ฆฌ๋Š” ์ตœ์ฒจ๋‹จ ๊ธฐ ์ˆ ์— ๋น„ํ•ด UPT ๋ฐ ์ฒ˜๋ฆฌ๋Ÿ‰๊ณผ ๊ฐ™์€ ๋„คํŠธ์›Œํฌ ์„ฑ๋Šฅ ํ–ฅ์ƒ์„ ๋‹ฌ์„ฑํ•˜๋Š” OOBE ์ธ์‹ ์ถ”๊ฐ€ ์•ก์„ธ์Šค ๋ฐ W-ARQ๋ฅผ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค.3GPP has developed 5 GHz unlicensed band LTE, referred to as licensed-assisted access (LAA). LAA adopts listen before talk (LBT) operation, resembling Wi-Fis carrier sense multiple access with collision avoidance (CSMA/CA), to enable collision avoidance capability, while the frame structure overhead of each LAA downlink burst varies with the ending time of each preceding LBT operation. In this dissertation, we propose numerical model to analyze unlicensed band cellular communication. Next, we consider the following two enhancements of unlicensed band cellular communication: (i) out-of-band emission (OOBE) aware additional carrier access, and (ii) Wi-Fi assisted hybrid automatic repeat request (H-ARQ) for unlicensed-band stand-alone cellular communication. Given that, existing analytic models of Wi-Fi cannot be used to evaluate the performance of LAA, in this letter, we propose a novel Markov chain-based analytic model to analyze the performance of LAA network composed of multiple contending evolved NodeBs by considering the variation of the LAA frame structure overhead. LTE-LAA adopts adaptive modulation and coding (AMC) for the rate adaptation algorithm inherited from LTE. AMC helps the evolved nodeB (eNB) to select a modulation and coding scheme (MCS) for the next transmission using the channel quality indicator feedback of the current transmission. For the conventional LTE operating in the licensed band, there is no node contention problem and AMC performance has been well studied. However, in the case of LTE-LAA operating in the unlicensed band, AMC performance has not been properly addressed due to the collision problem. In this letter, we propose a novel Markov chain-based analysis model for analyzing LTELAA performance under a realistic channel model considering AMC operation. We adopt Rayleigh fading channel model widely used in wireless network analysis, and compare our analysis results with the results obtained from ns-3 simulator. Comparison results show an average accuracy of 99.5%, which demonstrates the accuracy of our analysis model. Due to the requirement for a high data rate, the 3GPP has provided multi-carrier operation for LTE-LAA. However, multi-carrier operation is susceptible to OOBE and uses limited transmission power, resulting in inefficient channel usage. This paper proposes a novel multi-carrier access scheme to enhance channel efficiency. Our proposed scheme divides a transmission burst into multiple ones and uses short subframe transmission while meeting the transmission power limitation. In addition, we propose an energy detection algorithm to overcome the OOBE problem by deciding the channel status accurately. Our prototype using software-defined radio shows the feasibility and performance of the energy detection algorithm that determines the channel status with over 99% accuracy. Through ns-3 simulation, we confirm that the proposed multi-carrier access scheme achieves up to 59% and 21.5% performance gain in userperceived throughput compared with the conventional LBT type A and type B, respectively. Since the legacy LAA has deployment problem, 3GPP and MulteFire alliance proposed unlicensed band stand-alone cellular communication system. However, conventional unlicensed band stand-alone cellular communication system has low transmission probability of uplink control messages. This disertation proposes W-ARQ: Wi-Fi assisted HARQ which put uplink control messages into Wi-Fi block ACK frame. In addition we propose parallel HARQ and clustered Minstrel to enhance throughput performance of W-ARQ. Our proposed algorithm shows high throughput performance where conventional MulteFire shows almost zero throughput performance. In summary, we analyze the performance of unlicensed-band cellular communication. By using the proposed model, we insist the legacy multi-carrier operation and HARQ of unlicensed cellular communication is not efficient. By this reason, we propose OOBE aware additional access and W-ARQ which achievee enhancements of network performance such as UPT and throughput compared with state-of-the-art techniques.Abstract i Contents iv List of Tables vii List of Figures viii 1 Introduction 1 1.1 Unlicensed Band Communication System . . . . . . . . . . . . . . . 1 1.2 Overview of Existing Approaches . . . . . . . . . . . . . . . . . . . 2 1.2.1 License-assisted access . . . . . . . . . . . . . . . . . . . . . 2 1.2.2 Further LAA . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2.3 Non-3GPP Unlicensed Band Cellular Communication . . . . 6 1.3 Main Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.3.1 Performance Analysis of LTE-LAA . . . . . . . . . . . . . . 6 1.3.2 Out-of-Band Emission Aware Additional Carrier Access for LTE-LAA Network . . . . . . . . . . . . . . . . . . . . . . . 7 1.3.3 W-ARQ: Wi-Fi Assisted HARQ for Unlicensed Band StandAlone Cellular Communication System . . . . . . . . . . . . 8 1.4 Organization of the Dissertation . . . . . . . . . . . . . . . . . . . . 8 2 Performance Analysis of LTE-LAA network 10 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.3 Proposed Markov-Chain Model . . . . . . . . . . . . . . . . . . . . . 14 2.3.1 Markov Property . . . . . . . . . . . . . . . . . . . . . . . . 14 2.3.2 Markov Chain Model for EPS Type Variation . . . . . . . . . 16 2.3.3 LAA Network Throughput Estimation . . . . . . . . . . . . . 18 2.4 Model Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3 Out-of-Band Emission Aware Additional Carrier Access for LTE-LAA Network 35 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.2 Related work and Background . . . . . . . . . . . . . . . . . . . . . 37 3.2.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.2.2 Listen Before Talk . . . . . . . . . . . . . . . . . . . . . . . 38 3.2.3 Out-of-Band Emission . . . . . . . . . . . . . . . . . . . . . 39 3.3 Multi-carrier Operation of LTE-LAA . . . . . . . . . . . . . . . . . . 39 3.4 Carrier Sensing considering Out-of-Band Emission . . . . . . . . . . 47 3.4.1 Energy Detection Algorithm . . . . . . . . . . . . . . . . . . 49 3.4.2 Nominal Band Energy Detection . . . . . . . . . . . . . . . . 50 3.4.3 OOBE-Free Region Energy Detection . . . . . . . . . . . . . 51 3.5 Additional Carrier Access Scheme . . . . . . . . . . . . . . . . . . . 52 3.5.1 Basic Operation . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.5.2 Transmission Power Limitation . . . . . . . . . . . . . . . . 53 3.5.3 Dividing Transmission Burst . . . . . . . . . . . . . . . . . . 54 3.5.4 Short Subframe Decision . . . . . . . . . . . . . . . . . . . . 54 3.6 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.6.1 Performance of Energy Detection considering OOBE . . . . . 57 3.6.2 Simulation Environments . . . . . . . . . . . . . . . . . . . . 57 3.6.3 Performance of Proposed Carrier Access Scheme . . . . . . . 58 3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 4 W-ARQ: Wi-Fi Assisted HARQ for Unlicensed Band Stand-Alone Cellular Communication System 66 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 4.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 4.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 4.4 W-ARQ: Wi-Fi assisted HARQ for Unlicensed Band Stand-Alone Cellular Communication System . . . . . . . . . . . . . . . . . . . . . . 69 4.4.1 Parallel HARQ . . . . . . . . . . . . . . . . . . . . . . . . . 71 4.4.2 Clustered Minstrel . . . . . . . . . . . . . . . . . . . . . . . 72 4.5 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 75 4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 5 Concluding Remarks 80 5.1 Research Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 80 5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 Abstract (In Korean) 90 ๊ฐ์‚ฌ์˜ ๊ธ€ 93Docto

    Coordinated Dynamic Spectrum Management of LTE-U and Wi-Fi Networks

    Full text link
    This paper investigates the co-existence of Wi-Fi and LTE in emerging unlicensed frequency bands which are intended to accommodate multiple radio access technologies. Wi-Fi and LTE are the two most prominent access technologies being deployed today, motivating further study of the inter-system interference arising in such shared spectrum scenarios as well as possible techniques for enabling improved co-existence. An analytical model for evaluating the baseline performance of co-existing Wi-Fi and LTE is developed and used to obtain baseline performance measures. The results show that both Wi-Fi and LTE networks cause significant interference to each other and that the degradation is dependent on a number of factors such as power levels and physical topology. The model-based results are partially validated via experimental evaluations using USRP based SDR platforms on the ORBIT testbed. Further, inter-network coordination with logically centralized radio resource management across Wi-Fi and LTE systems is proposed as a possible solution for improved co-existence. Numerical results are presented showing significant gains in both Wi-Fi and LTE performance with the proposed inter-network coordination approach.Comment: Accepted paper at IEEE DySPAN 201

    Delay and Reliability of Load-Based Listen-Before-Talk in LAA

    Full text link
    ยฉ 2013 IEEE. With the release of the 5 GHz unlicensed spectrum has emerged licensed-Assisted access, in which long-Term evolution (LTE) operators compete with Wi-Fi users for a share of the unlicensed spectrum so as to augment their licensed spectrum. Subsequently, there has been the need to develop a LTE channel access mechanism that enables harmonious coexistence between Wi-Fi and LTE. Load-based listen-before-Talk (LB-LBT) has been adopted as this LTE channel access mechanism by the 3rd Generation Partnership Project (3GPP). Theoretical modelling of LB-LBT schemes has focused on throughput and fair channel-Time sharing between Wi-Fi and LTE technologies. We explore a LB-LBT scheme that belongs to LBT category 4, as recommended by the 3GPP, and develop a model for the distribution of the medium access control (MAC) delays experienced by the Wi-Fi packets and LTE frames. The model, validated by simulations, reveals design insights that can be used to dynamically adjust the LB-LBT parameters not only to achieve channel-Time fairness, but also to guarantee MAC-delay bounds, with specified probability

    Harmonising Coexistence of Machine Type Communications with Wi-Fi Data Traffic under Frame-Based LBT

    Full text link
    ยฉ 1972-2012 IEEE. The existence of relatively long LTE data blocks within the licensed-assisted access (LAA) framework results in bursty machine-type communications (MTC) packet arrivals, which cause system performance degradation and present new challenges in Markov modeling. We develop an embedded Markov chain to characterize the dynamic behavior of the contention arising from bursty MTC and Wi-Fi data traffic in the LAA framework. Our theoretical model reveals a high-contention phenomenon caused by the bursty MTC traffic, and quantifies the resulting performance degradation for both MTC and Wi-Fi data traffic. The Markov model is further developed to evaluate three potential solutions aiming to alleviate the contention. Our analysis shows that simply expanding the contention window, although successful in reducing congestion, may cause unacceptable MTC data loss. A TDMA scheme instead achieves better MTC packet delivery and overall throughput, but requires centralized coordination. We propose a distributed scheme that randomly spreads the MTC access processes through the available time period. Our model results, validated by simulations, demonstrate that the random spreading solution achieves a near TDMA performance, while preserving the distributed nature of the Wi-Fi protocol. It alleviates the MTC traffic contention and improves the overall throughput by up to 10%
    • โ€ฆ
    corecore