936 research outputs found

    Arc-swift: A Novel Transition System for Dependency Parsing

    Full text link
    Transition-based dependency parsers often need sequences of local shift and reduce operations to produce certain attachments. Correct individual decisions hence require global information about the sentence context and mistakes cause error propagation. This paper proposes a novel transition system, arc-swift, that enables direct attachments between tokens farther apart with a single transition. This allows the parser to leverage lexical information more directly in transition decisions. Hence, arc-swift can achieve significantly better performance with a very small beam size. Our parsers reduce error by 3.7--7.6% relative to those using existing transition systems on the Penn Treebank dependency parsing task and English Universal Dependencies.Comment: Accepted at ACL 201

    Elimination of Spurious Ambiguity in Transition-Based Dependency Parsing

    Get PDF
    We present a novel technique to remove spurious ambiguity from transition systems for dependency parsing. Our technique chooses a canonical sequence of transition operations (computation) for a given dependency tree. Our technique can be applied to a large class of bottom-up transition systems, including for instance Nivre (2004) and Attardi (2006)

    An Empirical Comparison of Parsing Methods for Stanford Dependencies

    Full text link
    Stanford typed dependencies are a widely desired representation of natural language sentences, but parsing is one of the major computational bottlenecks in text analysis systems. In light of the evolving definition of the Stanford dependencies and developments in statistical dependency parsing algorithms, this paper revisits the question of Cer et al. (2010): what is the tradeoff between accuracy and speed in obtaining Stanford dependencies in particular? We also explore the effects of input representations on this tradeoff: part-of-speech tags, the novel use of an alternative dependency representation as input, and distributional representaions of words. We find that direct dependency parsing is a more viable solution than it was found to be in the past. An accompanying software release can be found at: http://www.ark.cs.cmu.edu/TBSDComment: 13 pages, 2 figure
    • …
    corecore