222 research outputs found

    HeteroCore GPU to exploit TLP-resource diversity

    Get PDF

    A fine-grain time-sharing Time Warp system

    Get PDF
    Although Parallel Discrete Event Simulation (PDES) platforms relying on the Time Warp (optimistic) synchronization protocol already allow for exploiting parallelism, several techniques have been proposed to further favor performance. Among them we can mention optimized approaches for state restore, as well as techniques for load balancing or (dynamically) controlling the speculation degree, the latter being specifically targeted at reducing the incidence of causality errors leading to waste of computation. However, in state of the art Time Warp systems, events’ processing is not preemptable, which may prevent the possibility to promptly react to the injection of higher priority (say lower timestamp) events. Delaying the processing of these events may, in turn, give rise to higher incidence of incorrect speculation. In this article we present the design and realization of a fine-grain time-sharing Time Warp system, to be run on multi-core Linux machines, which makes systematic use of event preemption in order to dynamically reassign the CPU to higher priority events/tasks. Our proposal is based on a truly dual mode execution, application vs platform, which includes a timer-interrupt based support for bringing control back to platform mode for possible CPU reassignment according to very fine grain periods. The latter facility is offered by an ad-hoc timer-interrupt management module for Linux, which we release, together with the overall time-sharing support, within the open source ROOT-Sim platform. An experimental assessment based on the classical PHOLD benchmark and two real world models is presented, which shows how our proposal effectively leads to the reduction of the incidence of causality errors, as compared to traditional Time Warp, especially when running with higher degrees of parallelism

    Low Power Processor Architectures and Contemporary Techniques for Power Optimization – A Review

    Get PDF
    The technological evolution has increased the number of transistors for a given die area significantly and increased the switching speed from few MHz to GHz range. Such inversely proportional decline in size and boost in performance consequently demands shrinking of supply voltage and effective power dissipation in chips with millions of transistors. This has triggered substantial amount of research in power reduction techniques into almost every aspect of the chip and particularly the processor cores contained in the chip. This paper presents an overview of techniques for achieving the power efficiency mainly at the processor core level but also visits related domains such as buses and memories. There are various processor parameters and features such as supply voltage, clock frequency, cache and pipelining which can be optimized to reduce the power consumption of the processor. This paper discusses various ways in which these parameters can be optimized. Also, emerging power efficient processor architectures are overviewed and research activities are discussed which should help reader identify how these factors in a processor contribute to power consumption. Some of these concepts have been already established whereas others are still active research areas. © 2009 ACADEMY PUBLISHER

    Preemptive Thread Block Scheduling with Online Structural Runtime Prediction for Concurrent GPGPU Kernels

    Full text link
    Recent NVIDIA Graphics Processing Units (GPUs) can execute multiple kernels concurrently. On these GPUs, the thread block scheduler (TBS) uses the FIFO policy to schedule their thread blocks. We show that FIFO leaves performance to chance, resulting in significant loss of performance and fairness. To improve performance and fairness, we propose use of the preemptive Shortest Remaining Time First (SRTF) policy instead. Although SRTF requires an estimate of runtime of GPU kernels, we show that such an estimate of the runtime can be easily obtained using online profiling and exploiting a simple observation on GPU kernels' grid structure. Specifically, we propose a novel Structural Runtime Predictor. Using a simple Staircase model of GPU kernel execution, we show that the runtime of a kernel can be predicted by profiling only the first few thread blocks. We evaluate an online predictor based on this model on benchmarks from ERCBench, and find that it can estimate the actual runtime reasonably well after the execution of only a single thread block. Next, we design a thread block scheduler that is both concurrent kernel-aware and uses this predictor. We implement the SRTF policy and evaluate it on two-program workloads from ERCBench. SRTF improves STP by 1.18x and ANTT by 2.25x over FIFO. When compared to MPMax, a state-of-the-art resource allocation policy for concurrent kernels, SRTF improves STP by 1.16x and ANTT by 1.3x. To improve fairness, we also propose SRTF/Adaptive which controls resource usage of concurrently executing kernels to maximize fairness. SRTF/Adaptive improves STP by 1.12x, ANTT by 2.23x and Fairness by 2.95x compared to FIFO. Overall, our implementation of SRTF achieves system throughput to within 12.64% of Shortest Job First (SJF, an oracle optimal scheduling policy), bridging 49% of the gap between FIFO and SJF.Comment: 14 pages, full pre-review version of PACT 2014 poste

    Preemptive Software Transactional Memory

    Get PDF
    In state-of-the-art Software Transactional Memory (STM) systems, threads carry out the execution of transactions as non-interruptible tasks. Hence, a thread can react to the injection of a higher priority transactional task and take care of its processing only at the end of the currently executed transaction. In this article we pursue a paradigm shift where the execution of an in-memory transaction is carried out as a preemptable task, so that a thread can start processing a higher priority transactional task before finalizing its current transaction. We achieve this goal in an application-transparent manner, by only relying on Operating System facilities we include in our preemptive STM architecture. With our approach we are able to re-evaluate CPU assignment across transactions along a same thread every few tens of microseconds. This is mandatory for an effective priority-aware architecture given the typically finer-grain nature of in-memory transactions compared to their counterpart in database systems. We integrated our preemptive STM architecture with the TinySTM package, and released it as open source. We also provide the results of an experimental assessment of our proposal based on running a port of the TPC-C benchmark to the STM environment

    A Perspective on Safety and Real-Time Issues for GPU Accelerated ADAS

    Get PDF
    The current trend in designing Advanced Driving Assistance System (ADAS) is to enhance their computing power by using modern multi/many core accelerators. For many critical applications such as pedestrian detection, line following, and path planning the Graphic Processing Unit (GPU) is the most popular choice for obtaining orders of magnitude increases in performance at modest power consumption. This is made possible by exploiting the general purpose nature of today's GPUs, as such devices are known to express unprecedented performance per watt on generic embarrassingly parallel workloads (as opposed of just graphical rendering, as GPUs where only designed to sustain in previous generations). In this work, we explore novel challenges that system engineers have to face in terms of real-time constraints and functional safety when the GPU is the chosen accelerator. More specifically, we investigate how much of the adopted safety standards currently applied for traditional platforms can be translated to a GPU accelerated platform used in critical scenarios

    Time-Sharing Time Warp via Lightweight Operating System Support

    Get PDF
    The order according to which the different tasks are carried out within a Time Warp platform has a direct impact on performance, given that event processing is speculative, thus being subject to the possibility of being rolled-back. It is typically recognized that not-yet-executed events having lower timestamps should be given higher CPU-schedule priority, since this contributes to keep low the amount of rollbacks. However, common Time Warp platforms usually execute events as atomic actions. Hence control is bounced back to the underlying simulation platform only at the end of the current event processing routine. In other words, CPU-scheduling of events resembles classical batch-multitasking scheduling, which is recognized not to promptly react to variations of the priority of pending tasks (e.g. associated with the injection of new events in the system). In this article we present the design and implementation of a time-sharing Time Warp platform, to be run on multi-core machines, where the platform-level software is allowed to take back control on a periodical basis (with fine grain period), and to possibly preempt any ongoing event processing activity in favor of dispatching (along the same thread) any other event that is revealed to have higher priority. Our proposal is based on an ad-hoc kernel module for Linux, which implements a fine grain timer-interrupt mechanism with lightweight management, which is fully integrated with the modern top/bottom-half timer-interrupt Linux architecture, and which does not induce any bias in terms of relative CPU-usage planning across Time Warp vs non-Time Warp threads running on the machine. Our time-sharing architecture has been integrated within the open source ROOT-Sim optimistic simulation package, and we also report some experimental data for an assessment of our proposal
    • …
    corecore