235 research outputs found

    Reconfigurable Devices using Liquid Crystal at Microwave Frequencies in Substrate Integrated Waveguide

    Full text link
    [ES] La cantidad de servicios de telecomunicación se ha incrementado signiticativamente en las últimas décadas. El uso de teléfonos inteligentes, así como el Internet de las Cosas, está generando una saturación del espectro electromágnetico. Por tanto, los requisitos de los sistemas de microondas han cambiado para adaptarse a estos nuevos avances. Para satisfacer estas necesidades, se busca el desarrollo de dispositivos de bajo coste, volumen, peso y consumo. Además, interesa que sean espectralmente eficientes y fácilmente integrables con otros dispositivos. Entre todos los dispostivos de microondas, los filtros son elementos clave dentro de los sistemas de comunicaciones móviles e inalámbricas. Es por ello que el diseño de filtros que cumplan con los requisitos mencionados se ha convertido en un tema de gran interés. Para dar respuesta a este problema ha surgido la tecnología de Guía de Onda Integrada en Sustrato (Substrate Integrated Waveguide (SIW)), que permite la implementación de filtros con un reducido tamaño y fácilmente integrables con otros dispositivos en tecnología planar. Dicha tecnología presenta unas prestaciones en cuanto a manejo de potencia y pérdidas mejores que la tecnología de circuito impreso (Printed Circuit Board (PCB)), aunque no llegan a ser iguales que las de la guía de onda clásica. Por otro lado, la saturación espectral también lleva al estudio de filtros con respuestas variables en frecuencia, es decir, que puedan cambiar su frecuencia central y ancho de banda con el fin de adaptarse a las necesidades del sistema. Por ello, el objetivo general de esta Tesis es el análisis y diseño de nuevos filtros reconfigurables en tecnología integrada. El trabajo empieza con el estudio de los fundamentos de los filtros de microondas hasta llegar al diseño de resonadores reconfigurables en tecnología SIW usando el cristal líquido como material de reconfiguración. En primer lugar, se ha estudiado la influencia que los cambios en el valor de la permitividad dieléctrica en el interior de las estructuras filtrantes pueden tener en la respuesta de las mismos. En particular, se desarrollan filtros alternando secciones de línea con y sin dieléctrico dentro de una SIW vacía, Empty Substrate Integrated Waveguide (ESIW). Una vez hecho esto, se procede al estudio de materiales que tengan un valor de permitividad dieléctrica variable de alguna forma. En concreto, se ha realizado la caracterización de diferentes mezclas de cristal líquido a la frecuencia de microondas. Dicho material cambia su valor de permitividad cuando se le aplica un campo eléctrico o magnético. Dado que para la reconfiguración de la respuesta de los filtros se requiere de una estructura desacoplada en baja frecuencia, es decir, con más de un conductor, se ha desarrollado una estrategia para el desacoplo de la estructuras ESIW, la tecnología Decoupled Empty Substrate Integrated Waveguide (DESIW). Por último, se han diseñado resonadores en dicha tecnología DESIW, que se han llenado de cristal líquido y aplicado unos campos de polarización, consiguiendo variar su respuesta en frecuencia. Dichos resonadores constituyen el elemento básico para el desarrollo de filtros de microondas. Es por ello que el conocimiento obtenido en la Tesis es una buena base para futuros trabajos esta tecnología que permitan conseguir filtros de altas prestaciones.[CA] La quantitat de serveis de telecomunicació s'ha incrementat significativament en les últimes dècades. L'ús de telèfons intel\cdotligents, així com la internet de les coses, està generant una saturació de l'espectre electromagnètic. Per tant, els requisits dels sistemes de microones han canviat per a adaptar-se a aquests nous avanços. Per a satisfer aquestes necessitats, se cerca el desenvolupament de dispositius de baix cost, volum, pes i consum. A més, interessa que siguen espectralment eficients i fàcilment integrables amb altres dispositius. Entre tots els dispositius de microones, els filtres són elements clau dins dels sistemes de comunicacions mòbils i sense fil. És per això que el disseny de filtres que complisquen els requisits esmentats s'ha convertit en un tema de gran interès. Per a donar resposta a aquest problema ha sorgit la tecnologia de Guia d'Ona Integrada en Substrat (Substrate Integrated Waveguide (SIW)), que permet la implementació de filtres amb una reduïda grandària i fàcilment integrables amb altres dispositius en tecnologia planar. Aquesta tecnologia presenta unes prestacions quant a maneig de potència i pèrdues millors que la tecnologia de circuit imprès (Printed Circuit Board (PCB)), encara que no arriben a ser iguals que les de la guia d'ona clàssica. D'altra banda, la saturació espectral també porta a l'estudi de filtres amb respostes variables en freqüència, és a dir, que puguen canviar la seua freqüència central i l'amplada de banda amb la finalitat d'adaptar-se a les necessitats del sistema. Per això, l'objectiu general d'aquesta tesi és l'anàlisi i el disseny de nous filtres reconfigurables en tecnologia integrada. El treball comença amb l'estudi dels fonaments dels filtres de microones, fins a arribar al disseny de ressonadors reconfigurables en tecnologia SIW usant el cristall líquid com a material de reconfiguració. En primer lloc, s'ha estudiat la influència que els canvis en el valor de la permitivitat dielèctrica a l'interior de les estructures filtrants poden tenir en la resposta d'aquestes. En particular, es desenvolupen filtres que alternen seccions de línia amb dielèctric i sense dins d'una SIW buida, Empty Substrate Integrated Waveguide (ESIW). Una vegada fet això, es procedeix a l'estudi de materials que tinguen un valor de permitivitat dielèctrica variable d'alguna forma. En concret, s'ha realitzat la caracterització de diferents mescles de cristall líquid a la freqüència de microones. Aquest material canvia el seu valor de permitivitat quan se li aplica un camp elèctric o magnètic. Atès que per a la reconfiguració de la resposta dels filtres es requereix una estructura desacoblada en baixa freqüència, és a dir, amb més d'un conductor, s'ha desenvolupat una estratègia per al desacoblament d'estructures ESIW, la tecnologia Decoupled Empty Substrate Integrated Waveguide (DESIW). Finalment, s'han dissenyat ressonadors en aquesta tecnologia DESIW, que s'han omplit de cristall líquid i aplicat uns camps de polarització, i s'ha aconseguit variar la seua resposta en freqüència. Aquests ressonadors constitueixen l'element bàsic per al desenvolupament de filtres de microones. És per això que el coneixement obtingut en la tesi és una bona base per a futurs treballs d'aquesta tecnologia que permeten aconseguir filtres d'altes prestacions.[EN] The number of telecommunication services has increased significantly in recent decades. The use of smartphones, as well as the Internet of Things, is generating a saturation of the electromagnetic spectrum. Therefore, the requirements of microwave systems have changed to adapt to these new developments and related challenges. For achieving these needs, the development of devices with low cost, volume, weight and power consumption is sought. In addition, it interests to be spectrally efficient, to offer high performance, and to be easily integrated with other devices. Among all microwave devices, filters are key elements within mobile and wireless communication systems. In this context, the design of filters that meet the aforementioned requirements has become a topic of great interest. For solving this problem, Substrate Integrated Waveguide (SIW) technology has emerged, which allows the implementation of filters with a small size and to be easily integrated with other devices in planar technology. This technology has better power handling and loss performance than Printed Circuit Board (PCB) technology, although they do not have the performance of the classic waveguide counterpart. On the other hand, the spectral saturation also leads to the study of filters with tunable frequency response, that is, they can change their central frequency and bandwidth, in order to fulfil the changing system requirements. Therefore, the general objective of this PhD Thesis work is the analysis and design of new reconfigurable filters in integrated technology. The work begins with the study of the basics of microwave filters until the design of reconfigurable resonators in SIW technology, using Liquid Crystal (LC) as reconfiguration material. Firstly, the influence that the change of the dielectric permittivity value inside the filtering structures have on the frequency response has been studied. Particularly, filters have been obtained by alternating line sections with and without dielectric material inside an empty SIW (Empty Substrate Integrated Waveguide (ESIW)). Once this is done, it is proceed to the study of materials that have a variable dielectric permittivity value. Specifically, the characterization of different LC mixtures at microwave frequencies has been carried out. This material changes its permittivity value when an electric or magnetic bias field is applied. A low-frequency decoupled structure is required for the reconfiguration of filters, that is, structures with more than one conductor. For that, a strategy for decoupling ESIW structures has been developed, i.e, the Decoupled Empty Substrate Integrated Waveguide (DESIW) technology. Finally, some resonators have been designed in DESIW technology, which have been filled with LC. The use of LC allows to tune their frequency response. These resonators are basic elements for the development of microwave filters. So that, the knowledge obtained in this Thesis work is a good basis for future works in this technology that allow for achieving high performance filters.Sánchez Marín, JR. (2019). Reconfigurable Devices using Liquid Crystal at Microwave Frequencies in Substrate Integrated Waveguide [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/132183TESI

    Semi-analytic modeling of stacked metasurfaces

    Get PDF
    Ziel dieser Arbeit war die Entwicklung eines semi-analytischen Models mehrschichtiger nano- strukturierter Oberflächen. Einzelne Schichten werden hierbei in Forschungsgemeinschaft als “Metasurface” bezeichnet. In Folge nennt man Schichtsysteme aus Metasurfaces “Metasurface Stacks” oder “Stacked Metasurfaces”. Das besondere an Metasurfaces liegt an einer speziellen Art der Licht-Materie-Wechselwirkung. Im Gegensatz zu herkömmlichen, natürlich vorkommenden optischen Materialien, welche im Wesentlichen durch ihre atom- und molekularphysikalischen Eigenschaften wechselwirken, besitzen Metasurfaces mesoskopische Strukturen. Diese haben Größen, die der von Lichtwellen entsprechen. Dadurch entstehen zum einen Streuphänomene die komplexe Feldwechselwirkungen erzeugen. Darüberhinaus sorgen evaneszente Felder, die auf der Oberfläche der Nano-Strukturen angeregt werden können, für ein geändertes Resonanzverhalten, welches sich durch verschiedene Reflektions- und Absorptionseigenschaften auszeichnet. Sind die Strukturen einer Metasurface periodisch angeordnet lassen sich die dort angeregten Felder durch sogenannte Bloch-Moden beschreiben. Diese sind periodische Feldlösungen der Maxwell-Gleichungen. Betrachtet man nun die Gesamtheit aller Bloch-Moden der Metasurface, kann man eine dominante Mode mit, im Vergleich zu allen anderen, maximalem Energietransport in das Fernfeld identifizieren. Diese nennt man in der Literatur Fundamentalmode. Ist die Metasurface so beschaffen, dass bei Wechselwirkung mit Licht einer bestimmten Wellenlänge diese Fundamentalmode signifikant alle anderen Moden dominiert und letztere stark dämpfen, das heißt evaneszent abfallen, so kann das betreffende Medium als homogen gedeutet werden. Darauf basierend wurde in der vorliegenden Arbeit ein semi-analytisches Model von Stacked Metasurfaces entwickelt, welches verschiedenen experimentellen Tests stand hielt. Ein besonderer Erfolg liegt in der Erweiterung des Modells zur Untersuchung von Feynman-Pfaden

    Impedance Transformers

    Get PDF
    Non

    Gratings: Theory and Numeric Applications, Second Revisited Edition

    Get PDF
    International audienceThe second Edition of the Book contains 13 chapters, written by an international team of specialist in electromagnetic theory, numerical methods for modelling of light diffraction by periodic structures having one-, two-, or three-dimensional periodicity, and aiming numerous applications in many classical domains like optical engineering, spectroscopy, and optical telecommunications, together with newly born fields such as photonics, plasmonics, photovoltaics, metamaterials studies, cloaking, negative refraction, and super-lensing. Each chapter presents in detail a specific theoretical method aiming to a direct numerical application by university and industrial researchers and engineers.In comparison with the First Edition, we have added two more chapters (ch.12 and ch.13), and revised four other chapters (ch.6, ch.7, ch.10, and ch.11

    Radiation losses in dielectric optical waveguides

    No full text
    The effect of irregularities and deviations from the perfect structure of the ideal waveguide is to scatter some of the guided power carried by the modes of the ideal waveguide incident on the irregularity. This scattered power is redistributed over the (non-attenuating) bound modes of the structure and into the radiation modes of the waveguide. The study of this redistribution of the power over the discrete (bound) mode spectrum can be adequately analysed by conventional electromagnetic Coupled Mode Theory. However, the application of this technique for the analysis of the radiative losses, i.e. the coupling into the radiation modes of the waveguide proves to be extremely tedious due to the difficulty of normalisation and orthogonalisation of these "improper" modes. The aim of this thesis is to present alternative techniques to the Coupled Mode Theory analysis, which provide simple treatments of these radiation loss processes in weakly guiding dielectric optical fibres. The philosophy of the presentation is the present the technique and choose the least number of practical examples that elucidate the strengths and deficiencies of each approach, rather than list ad nauseum a wide range of practical examples. In Chapter 1, a general background to the theoretical analysis of propagation in dielectric optical waveguides is presented, together with a qualitative introduction to the effects of irregularities and their relative importance in the design of a practical fibre optic communications network. In Chapter 2, the bound electromagnetic modes of the weakly guiding dielectric optical fibre of circular cross section with an arbitrary dielectric profile in the core and an infinite uniform cladding are presented in the azimuthal travelling wave form, viz. exp{-i£(j)} variation. These results are derived within the approximation of ignoring all terms in the gradient of the dielectric permittivity. These modal fields are used as the basis of all the analysis of the remaining chapters. In Chapter 3, the philosophy of the Volume Current Method for the calculation of the radiation loss due to slight imperfections in the ideal straight optical waveguide is presented. In particular, the radiation induced by small weak isolated dielectric irregularities and fluctuation in the core radius are analysed by this technique. Comparisons are made with the exact treatment (to first order in the perturbation) of Coupled Mode Theory, to display the validity of the method. In Chapter 4, the breakdown of the Volume Current Method for paraxially directed radiation is discussed and a correction to the Volume Current Method is formulated, so that the simplicity of the analysis via the Volume Current Method is retained but the validity of the results extended. The correction based upon the harmonic time equivalent of the "method of images" in statics is applied to both planar and circular cylindrical structures. In Chapter 5, the philosophy of the Surface Current Method which is derived from the Stratton-Chu Integral, is presented and applied to determine the tunnelling leaky mode power attenuation coefficient for the tunnelling leaky modes of arbitrary dielectric profile. In this chapter, we demonstrate the relative simplicity of the Stratton-Chu Integral for the radiation fields of the weakly guiding dielectric optical fibre when the azimuthal travelling wave modes are used. In Chapter 6, this Surface Current Method is applied to the study of radiation losses due to slow bends in dielectric optical waveguides. The modal power attenuation coefficient of a mode incident on a planar bend of constant curvature is derived for slabs and fibres and compared with previously reported results. Ray optical analyses are used to elucidate the physical nature of the approximations utilised in the analysis and from those arguments, restrictions on the radius of curvature for which no significant field deformation and mode coupling occurs, are presented. In Chapter 7, we summarise the major conclusions of this thesis and suggest directions for further research in this field

    Beam scanning by liquid-crystal biasing in a modified SIW structure

    Get PDF
    A fixed-frequency beam-scanning 1D antenna based on Liquid Crystals (LCs) is designed for application in 2D scanning with lateral alignment. The 2D array environment imposes full decoupling of adjacent 1D antennas, which often conflicts with the LC requirement of DC biasing: the proposed design accommodates both. The LC medium is placed inside a Substrate Integrated Waveguide (SIW) modified to work as a Groove Gap Waveguide, with radiating slots etched on the upper broad wall, that radiates as a Leaky-Wave Antenna (LWA). This allows effective application of the DC bias voltage needed for tuning the LCs. At the same time, the RF field remains laterally confined, enabling the possibility to lay several antennas in parallel and achieve 2D beam scanning. The design is validated by simulation employing the actual properties of a commercial LC medium

    Photonic crystal antireflection coatings, surface modes, and impedances

    Get PDF
    We present a rigorous definition of a wave impedance for 2D rectangular and triangular lattice photonic crystals (PCs), in the form of a matrix. Reflection and transmission at an interface between PCs can be represented by matrices that relate the Bloch mode (eigenmode) amplitudes in the two PCs; we show that these matrices, which are multi-mode generalisations of reflection and transmission coefficients, may be calculated from the PCs' impedances that we define. Given the impedances and Bloch factors (propagation constants) of a collection of PCs, the reflection and transmission properties of arbitrary stacks of these PCs may be calculated efficiently using a few matrix operations. Therefore our definition enables PC-based antireflection coatings to be designed efficiently: some computationally expensive simulations are required in an initial step to find a range of PCs' impedances, but then the reflectances of every coating that consists of a stack of these PCs can be calculated without any further simulations. We first define the PC impedance from the transfer matrix of a single PC layer (i.e., a grating). Since transfer matrix methods are not especially widespread, we also present a method and associated source code to extract a PC's propagating and evanescent Bloch modes from a scattering calculation that can be performed by any off-the-shelf field solver, and to calculate impedances from the extracted modal fields. Finally, we put our method to use. We apply it to design antireflection coatings, nearly eliminating reflection at a single frequency for one or both polarisations, or lowering it across a larger bandwidth. We use it to find surface modes at interfaces between PCs and air, and their projected band structures. We use the impedance to define effective parameters for PC homogenisation, and we briefly describe how our definition has been used to dispersion engineer a PC waveguide

    Electromagnetic Waves

    Get PDF
    This volume is based on the contributions of several authors in electromagnetic waves propagations. Several issues are considered. The contents of most of the chapters are highlighting non classic presentation of wave propagation and interaction with matters. This volume bridges the gap between physics and engineering in these issues. Each chapter keeps the author notation that the reader should be aware of as he reads from chapter to the other

    Modelling and Characterization of Guiding Micro-structured Devices for Integrated Optics

    Get PDF
    In this thesis we show several modelling tools which are used to study nonlinear photonic band-gap structures and microcavities. First of all a nonlinear CMT and BPM were implemented to test the propagation of spatial solitons in a periodic device, composed by an array of parallel straight waveguides. In addition to noteworthy theoretical considerations, active functionalities are possible by exploiting these nonlinear regimes. Another algorithm was developed for the three-dimensional modelling of photonic cavities with cylindrical symmetry, such as microdisks. This method is validated by comparison with FDTD. We also show the opportunity to confine a field in a region of low refractive index lying in the centre of a silicon microdisk. High Q-factor and small mode volumes are achieved. Finally the characterization of microdisks in SOI with Q-factor larger than 50000 is presente
    corecore