249 research outputs found

    Multi-band carrier-less amplitude and phase modulation for bandlimited visible light communications systems

    Get PDF
    Visible light communications is a technology with enormous potential for a wide range of applications within next generation transmission and broadcasting technologies. VLC offers simultaneous illumination and data communications by intensity modulating the optical power emitted by LEDs operating in the visible range of the electromagnetic spectrum (~370-780 nm). The major challenge in VLC systems to date has been in improving transmission speeds, considering the low bandwidths available with commercial LED devices. Thus, to improve the spectral usage, the research community has increasingly turned to advanced modulation formats such as orthogonal frequency-division multiplexing. In this article we introduce a new modulation scheme into the VLC domain; multiband carrier-less amplitude and phase modulation (m-CAP) and describe in detail its performance within the context of bandlimited systems

    Forward Error Correcting Codes for 100 Gbit/s Optical Communication Systems

    Get PDF

    Linear and Nonlinear Frequency-Division Multiplexing

    Get PDF
    Two signal multiplexing schemes for optical fiber communication are considered: Wavelength-division multiplexing (WDM) and nonlinear frequency-division multiplexing (NFDM), based on the nonlinear Fourier transform. Achievable information rates (AIRs) of NFDM and WDM are compared in a network scenario with an ideal lossless model of the optical fiber in the defocusing regime. It is shown that the NFDM AIR is greater than the WDM AIR subject to a bandwidth and average power constraint, in a representative system with one symbol per user. The improvement results from nonlinear signal multiplexing
    • …
    corecore