482 research outputs found

    Centroid-Based Clustering with ab-Divergences

    Get PDF
    Centroid-based clustering is a widely used technique within unsupervised learning algorithms in many research fields. The success of any centroid-based clustering relies on the choice of the similarity measure under use. In recent years, most studies focused on including several divergence measures in the traditional hard k-means algorithm. In this article, we consider the problem of centroid-based clustering using the family of ab-divergences, which is governed by two parameters, a and b. We propose a new iterative algorithm, ab-k-means, giving closed-form solutions for the computation of the sided centroids. The algorithm can be fine-tuned by means of this pair of values, yielding a wide range of the most frequently used divergences. Moreover, it is guaranteed to converge to local minima for a wide range of values of the pair (a, b). Our theoretical contribution has been validated by several experiments performed with synthetic and real data and exploring the (a, b) plane. The numerical results obtained confirm the quality of the algorithm and its suitability to be used in several practical applications.MINECO TEC2017-82807-

    Generalized Alpha-Beta Divergences and Their Application to Robust Nonnegative Matrix Factorization

    Get PDF
    We propose a class of multiplicative algorithms for Nonnegative Matrix Factorization (NMF) which are robust with respect to noise and outliers. To achieve this, we formulate a new family generalized divergences referred to as the Alpha-Beta-divergences (AB-divergences), which are parameterized by the two tuning parameters, alpha and beta, and smoothly connect the fundamental Alpha-, Beta- and Gamma-divergences. By adjusting these tuning parameters, we show that a wide range of standard and new divergences can be obtained. The corresponding learning algorithms for NMF are shown to integrate and generalize many existing ones, including the Lee-Seung, ISRA (Image Space Reconstruction Algorithm), EMML (Expectation Maximization Maximum Likelihood), Alpha-NMF, and Beta-NMF. Owing to more degrees of freedom in tuning the parameters, the proposed family of AB-multiplicative NMF algorithms is shown to improve robustness with respect to noise and outliers. The analysis illuminates the links of between AB-divergence and other divergences, especially Gamma- and Itakura-Saito divergences

    A tensor-based approach for automatic music genre classification

    Get PDF
    Most music genre classification techniques employ pattern recognition algorithms to classify feature vectors extracted from recordings into genres. An automatic music genre classification system using tensor representations is proposed, where each recording is represented by a feature matrix over time. Thus, a feature tensor is created by concatenating the feature matrices associated to the recordings. A novel algorithm for non-negative tensor factorization (NTF), which employs the Frobenius norm between an n-dimensional raw feature tensor and its decomposition into a sum of elementary rank-1 tensors, is developed. Moreover, a supervised NTF classifier is proposed. A variety of sound description features are extracted from recordings from the GTZAN dataset, covering 10 genre classes. NTF classifier performance is compared against multilayer perceptrons, support vector machines, and non-negative matrix factorization classifiers. On average, genre classification accuracy equal to 75% with a standard deviation of 1% is achieved. It is demonstrated that NTF classifiers outperform matrix-based ones
    corecore