2,544 research outputs found

    Towards a Systematic Account of Different Semantics for Logic Programs

    Get PDF
    In [Hitzler and Wendt 2002, 2005], a new methodology has been proposed which allows to derive uniform characterizations of different declarative semantics for logic programs with negation. One result from this work is that the well-founded semantics can formally be understood as a stratified version of the Fitting (or Kripke-Kleene) semantics. The constructions leading to this result, however, show a certain asymmetry which is not readily understood. We will study this situation here with the result that we will obtain a coherent picture of relations between different semantics for normal logic programs.Comment: 20 page

    Nonmonotonic Trust Management for P2P Applications

    Get PDF
    Community decisions about access control in virtual communities are non-monotonic in nature. This means that they cannot be expressed in current, monotonic trust management languages such as the family of Role Based Trust Management languages (RT). To solve this problem we propose RT-, which adds a restricted form of negation to the standard RT language, thus admitting a controlled form of non-monotonicity. The semantics of RT- is discussed and presented in terms of the well-founded semantics for Logic Programs. Finally we discuss how chain discovery can be accomplished for RT-.Comment: This paper appears in the proceedings of the 1st International Workshop on Security and Trust Management (STM 2005). To appear in ENTC

    A flexible framework for defeasible logics

    Get PDF
    Logics for knowledge representation suffer from over-specialization: while each logic may provide an ideal representation formalism for some problems, it is less than optimal for others. A solution to this problem is to choose from several logics and, when necessary, combine the representations. In general, such an approach results in a very difficult problem of combination. However, if we can choose the logics from a uniform framework then the problem of combining them is greatly simplified. In this paper, we develop such a framework for defeasible logics. It supports all defeasible logics that satisfy a strong negation principle. We use logic meta-programs as the basis for the framework.Comment: Proceedings of 8th International Workshop on Non-Monotonic Reasoning, April 9-11, 2000, Breckenridge, Colorad

    Formal Concept Analysis and Resolution in Algebraic Domains

    Full text link
    We relate two formerly independent areas: Formal concept analysis and logic of domains. We will establish a correspondene between contextual attribute logic on formal contexts resp. concept lattices and a clausal logic on coherent algebraic cpos. We show how to identify the notion of formal concept in the domain theoretic setting. In particular, we show that a special instance of the resolution rule from the domain logic coincides with the concept closure operator from formal concept analysis. The results shed light on the use of contexts and domains for knowledge representation and reasoning purposes.Comment: 14 pages. We have rewritten the old version according to the suggestions of some referees. The results are the same. The presentation is completely differen

    SAT Modulo Monotonic Theories

    Full text link
    We define the concept of a monotonic theory and show how to build efficient SMT (SAT Modulo Theory) solvers, including effective theory propagation and clause learning, for such theories. We present examples showing that monotonic theories arise from many common problems, e.g., graph properties such as reachability, shortest paths, connected components, minimum spanning tree, and max-flow/min-cut, and then demonstrate our framework by building SMT solvers for each of these theories. We apply these solvers to procedural content generation problems, demonstrating major speed-ups over state-of-the-art approaches based on SAT or Answer Set Programming, and easily solving several instances that were previously impractical to solve

    Induction of Non-Monotonic Logic Programs to Explain Boosted Tree Models Using LIME

    Full text link
    We present a heuristic based algorithm to induce \textit{nonmonotonic} logic programs that will explain the behavior of XGBoost trained classifiers. We use the technique based on the LIME approach to locally select the most important features contributing to the classification decision. Then, in order to explain the model's global behavior, we propose the LIME-FOLD algorithm ---a heuristic-based inductive logic programming (ILP) algorithm capable of learning non-monotonic logic programs---that we apply to a transformed dataset produced by LIME. Our proposed approach is agnostic to the choice of the ILP algorithm. Our experiments with UCI standard benchmarks suggest a significant improvement in terms of classification evaluation metrics. Meanwhile, the number of induced rules dramatically decreases compared to ALEPH, a state-of-the-art ILP system
    • …
    corecore