824 research outputs found

    Locally Adaptive Optimization: Adaptive Seeding for Monotone Submodular Functions

    Full text link
    The Adaptive Seeding problem is an algorithmic challenge motivated by influence maximization in social networks: One seeks to select among certain accessible nodes in a network, and then select, adaptively, among neighbors of those nodes as they become accessible in order to maximize a global objective function. More generally, adaptive seeding is a stochastic optimization framework where the choices in the first stage affect the realizations in the second stage, over which we aim to optimize. Our main result is a (11/e)2(1-1/e)^2-approximation for the adaptive seeding problem for any monotone submodular function. While adaptive policies are often approximated via non-adaptive policies, our algorithm is based on a novel method we call \emph{locally-adaptive} policies. These policies combine a non-adaptive global structure, with local adaptive optimizations. This method enables the (11/e)2(1-1/e)^2-approximation for general monotone submodular functions and circumvents some of the impossibilities associated with non-adaptive policies. We also introduce a fundamental problem in submodular optimization that may be of independent interest: given a ground set of elements where every element appears with some small probability, find a set of expected size at most kk that has the highest expected value over the realization of the elements. We show a surprising result: there are classes of monotone submodular functions (including coverage) that can be approximated almost optimally as the probability vanishes. For general monotone submodular functions we show via a reduction from \textsc{Planted-Clique} that approximations for this problem are not likely to be obtainable. This optimization problem is an important tool for adaptive seeding via non-adaptive policies, and its hardness motivates the introduction of \emph{locally-adaptive} policies we use in the main result

    Non-monotone Submodular Maximization with Nearly Optimal Adaptivity and Query Complexity

    Full text link
    Submodular maximization is a general optimization problem with a wide range of applications in machine learning (e.g., active learning, clustering, and feature selection). In large-scale optimization, the parallel running time of an algorithm is governed by its adaptivity, which measures the number of sequential rounds needed if the algorithm can execute polynomially-many independent oracle queries in parallel. While low adaptivity is ideal, it is not sufficient for an algorithm to be efficient in practice---there are many applications of distributed submodular optimization where the number of function evaluations becomes prohibitively expensive. Motivated by these applications, we study the adaptivity and query complexity of submodular maximization. In this paper, we give the first constant-factor approximation algorithm for maximizing a non-monotone submodular function subject to a cardinality constraint kk that runs in O(log(n))O(\log(n)) adaptive rounds and makes O(nlog(k))O(n \log(k)) oracle queries in expectation. In our empirical study, we use three real-world applications to compare our algorithm with several benchmarks for non-monotone submodular maximization. The results demonstrate that our algorithm finds competitive solutions using significantly fewer rounds and queries.Comment: 12 pages, 8 figure

    Practical Parallel Algorithms for Non-Monotone Submodular Maximization

    Full text link
    Submodular maximization has found extensive applications in various domains within the field of artificial intelligence, including but not limited to machine learning, computer vision, and natural language processing. With the increasing size of datasets in these domains, there is a pressing need to develop efficient and parallelizable algorithms for submodular maximization. One measure of the parallelizability of a submodular maximization algorithm is its adaptive complexity, which indicates the number of sequential rounds where a polynomial number of queries to the objective function can be executed in parallel. In this paper, we study the problem of non-monotone submodular maximization subject to a knapsack constraint, and propose the first combinatorial algorithm achieving an (8+ϵ)(8+\epsilon)-approximation under O(logn)\mathcal{O}(\log n) adaptive complexity, which is \textit{optimal} up to a factor of O(loglogn)\mathcal{O}(\log\log n). Moreover, we also propose the first algorithm with both provable approximation ratio and sublinear adaptive complexity for the problem of non-monotone submodular maximization subject to a kk-system constraint. As a by-product, we show that our two algorithms can also be applied to the special case of submodular maximization subject to a cardinality constraint, and achieve performance bounds comparable with those of state-of-the-art algorithms. Finally, the effectiveness of our approach is demonstrated by extensive experiments on real-world applications.Comment: Part of the contribution appears in AAAI-202

    Submodular Maximization with Matroid and Packing Constraints in Parallel

    Full text link
    We consider the problem of maximizing the multilinear extension of a submodular function subject a single matroid constraint or multiple packing constraints with a small number of adaptive rounds of evaluation queries. We obtain the first algorithms with low adaptivity for submodular maximization with a matroid constraint. Our algorithms achieve a 11/eϵ1-1/e-\epsilon approximation for monotone functions and a 1/eϵ1/e-\epsilon approximation for non-monotone functions, which nearly matches the best guarantees known in the fully adaptive setting. The number of rounds of adaptivity is O(log2n/ϵ3)O(\log^2{n}/\epsilon^3), which is an exponential speedup over the existing algorithms. We obtain the first parallel algorithm for non-monotone submodular maximization subject to packing constraints. Our algorithm achieves a 1/eϵ1/e-\epsilon approximation using O(log(n/ϵ)log(1/ϵ)log(n+m)/ϵ2)O(\log(n/\epsilon) \log(1/\epsilon) \log(n+m)/ \epsilon^2) parallel rounds, which is again an exponential speedup in parallel time over the existing algorithms. For monotone functions, we obtain a 11/eϵ1-1/e-\epsilon approximation in O(log(n/ϵ)log(m)/ϵ2)O(\log(n/\epsilon)\log(m)/\epsilon^2) parallel rounds. The number of parallel rounds of our algorithm matches that of the state of the art algorithm for solving packing LPs with a linear objective. Our results apply more generally to the problem of maximizing a diminishing returns submodular (DR-submodular) function
    corecore