906 research outputs found

    NILM techniques for intelligent home energy management and ambient assisted living: a review

    Get PDF
    The ongoing deployment of smart meters and different commercial devices has made electricity disaggregation feasible in buildings and households, based on a single measure of the current and, sometimes, of the voltage. Energy disaggregation is intended to separate the total power consumption into specific appliance loads, which can be achieved by applying Non-Intrusive Load Monitoring (NILM) techniques with a minimum invasion of privacy. NILM techniques are becoming more and more widespread in recent years, as a consequence of the interest companies and consumers have in efficient energy consumption and management. This work presents a detailed review of NILM methods, focusing particularly on recent proposals and their applications, particularly in the areas of Home Energy Management Systems (HEMS) and Ambient Assisted Living (AAL), where the ability to determine the on/off status of certain devices can provide key information for making further decisions. As well as complementing previous reviews on the NILM field and providing a discussion of the applications of NILM in HEMS and AAL, this paper provides guidelines for future research in these topics.Agência financiadora: Programa Operacional Portugal 2020 and Programa Operacional Regional do Algarve 01/SAICT/2018/39578 Fundação para a Ciência e Tecnologia through IDMEC, under LAETA: SFRH/BSAB/142998/2018 SFRH/BSAB/142997/2018 UID/EMS/50022/2019 Junta de Comunidades de Castilla-La-Mancha, Spain: SBPLY/17/180501/000392 Spanish Ministry of Economy, Industry and Competitiveness (SOC-PLC project): TEC2015-64835-C3-2-R MINECO/FEDERinfo:eu-repo/semantics/publishedVersio

    Identifying Appliances using NIALM with Minimum Features

    Get PDF
    Government of India has decided to install smart meters in fourteen states. Smart meters are required to identify home appliances to fulfill various tasks in the smart grid environment. Both intrusive and non-intrusive methods have been suggested for identification. However, intrusive method is not suitable for cost and privacy reasons. On the other hand, techniques using non-intrusive appliance load monitoring (NIALM) are yet to result in meaningful practical implementation. Two major challenges in NIALM research are the choice of features (load signatures of appliances), and the appropriate algorithm. Both have a direct impact on the cost of the smart meter. In this paper, we address the two issues and propose a procedure with only four features and a simple algorithm to identify appliances. Our experimental setup, on the recommended specifications of the internal electrical wiring in Indian residences, used common household appliances’ load signatures of active and reactive powers, harmonic components and their magnitudes. We show that these four features are essential and sufficient for implementation of NIALM with a simple algorithm. We have introduced a new approach of ‘multi point sensing’ and ‘group control’ rather than the ‘single point sensing’ and ‘individual control’, used so far in NIALM techniques.DOI:http://dx.doi.org/10.11591/ijece.v4i6.671

    Incorporating appliance usage patterns for non-intrusive load monitoring and load forecasting

    Get PDF
    This paper proposes a novel Non-Intrusive Load Monitoring (NILM) method which incorporates appliance usage patterns (AUPs) to improve performance of active load identi- fication and forecasting. In the first stage, the AUPs of a given residence were learnt using a spectral decomposition based standard NILM algorithm. Then, learnt AUPs were utilized to bias the priori probabilities of the appliances through a specifically constructed fuzzy system. The AUPs contain likelihood measures for each appliance to be active at the present instant based on the recent activity/inactivity of appliances and the time of day. Hence, the priori probabilities determined through the AUPs increase the active load identification accuracy of the NILM algorithm. The proposed method was successfully tested for two standard databases containing real household measurements in USA and Germany. The proposed method demonstrates an improvement in active load estimation when applied to the aforementioned databases as the proposed method augments the smart meter readings with the behavioral trends obtained from AUPs. Furthermore, a residential power consumption forecasting mechanism, which can predict the total active power demand of an aggregated set of houses, five minutes ahead of real time, was successfully formulated and implemented utilizing the proposed AUP based technique

    Deep learning applications in non-intrusive load monitoring

    Get PDF
    Non-Intrusive Load Monitoring (NILM) is a technique for inferring the power consumption of each appliance within a home from one central meter, aiding in energy conservation. In this thesis I present several Deep Learning solutions for NILM, starting with two preliminary works – A proof of concept project for multisensory NILM on a Raspberry Pi; and a fully developed NILM solution named WaveNILM. Despite their success, both methods struggled to generalize outside their training data, a common problem in NILM. To improve generalization, I designed a framework for synthesizing truly novel appliance level power signatures based on generative adversarial networks (GAN) – the main project of this thesis. This generator, named PowerGAN, is trained using a variety of GAN techniques. I present a comparison of PowerGAN to other data synthesis work in the context of NILM and demonstrate that PowerGAN is able to create truly synthetic, realistic, diverse, appliance power signatures

    Non-intrusive load management system for residential loads using artificial neural network based arduino microcontroller

    Get PDF
    The energy monitoring is one of the most important aspects of energy management. In fact there is a need to monitor the power consumption of a building or premises before planning technical actions to minimize the energy consumption. In traditional load monitoring method, a sensor or a group of sensors attached to every load of interest to monitor the system, which makes the system costly and complex. On the other hand, by Non-Intrusive Load Monitoring (NILM) the aggregated measurement of the building’s appliances can be used to identify and/or disaggregate the connected appliances in the building. Therefore, the method provides a simple, reliable and cost effective monitoring since it uses only one set of measuring sensors at the service entry. This thesis aims at finding a solution in the residential electrical energy management through the development of Artificial Neural Network Arduino (ANN-Arduino) NILM system for monitoring and controlling the energy consumption of the home appliances. The major goal of this research work is the development of a simplified ANN-based non-intrusive residential appliances identifier. It is a real-time ANN-Arduino NILM system for residential energy management with its performance evaluation and the calibration of the ZMPT101B voltage sensor module for accurate measurement, by using polynomial regression method. Using the sensor algorithm obtained, an error of 0.9% in the root mean square (rms) measurement of the voltage is obtained using peak-peak measurement method, in comparison to 2.5% when using instantaneous measurement method. Secondly, a residential energy consumption measurement and control system is developed using Arduino microcontroller, which accurately control the home appliances within the threshold power consumption level. The energy consumption measurement prototype has an accurate power and current measurement with error of 3.88% in current measurement when compared with the standard Fluke meter. An ANN-Arduino NILM system is also developed using steady-state signatures, which uses the feedforward ANN to identify the loads when it received the aggregated real power, rms current and power factor from the Arduino. Finally, the ANN-Arduino NILM based appliances’ management and control system is developed for keeping track of the appliances and managing their energy usage. The system accurately recognizes all the load combinations and the load controlling works within 2% time error. The overall system resulted into a new home appliances’ energy management system based on ANN-Arduino NILM that can be applied into smart electricity system at a reduced cost, reduced complexity and non-intrusively
    • …
    corecore