1,228 research outputs found

    Bayesian Nonparametric Multilevel Clustering with Group-Level Contexts

    Get PDF
    We present a Bayesian nonparametric framework for multilevel clustering which utilizes group-level context information to simultaneously discover low-dimensional structures of the group contents and partitions groups into clusters. Using the Dirichlet process as the building block, our model constructs a product base-measure with a nested structure to accommodate content and context observations at multiple levels. The proposed model possesses properties that link the nested Dirichlet processes (nDP) and the Dirichlet process mixture models (DPM) in an interesting way: integrating out all contents results in the DPM over contexts, whereas integrating out group-specific contexts results in the nDP mixture over content variables. We provide a Polya-urn view of the model and an efficient collapsed Gibbs inference procedure. Extensive experiments on real-world datasets demonstrate the advantage of utilizing context information via our model in both text and image domains.Comment: Full version of ICML 201

    Variational Approaches For Learning Finite Scaled Dirichlet Mixture Models

    Get PDF
    With a massive amount of data created on a daily basis, the ubiquitous demand for data analysis is undisputed. Recent development of technology has made machine learning techniques applicable to various problems. Particularly, we emphasize on cluster analysis, an important aspect of data analysis. Recent works with excellent results on the aforementioned task using finite mixture models have motivated us to further explore their extents with different applications. In other words, the main idea of mixture model is that the observations are generated from a mixture of components, in each of which the probability distribution should provide strong flexibility in order to fit numerous types of data. Indeed, the Dirichlet family of distributions has been known to achieve better clustering performances than those of Gaussian when the data are clearly non-Gaussian, especially proportional data.  Thus, we introduce several variational approaches for finite Scaled Dirichlet mixture models. The proposed algorithms guarantee reaching convergence while avoiding the computational complexity of conventional Bayesian inference. In summary, our contributions are threefold. First, we propose a variational Bayesian learning framework for finite Scaled Dirichlet mixture models, in which the parameters and complexity of the models are naturally estimated through the process of minimizing the Kullback-Leibler (KL) divergence between the approximated posterior distribution and the true one. Secondly, we integrate component splitting into the first model, a local model selection scheme, which gradually splits the components based on their mixing weights to obtain the optimal number of components. Finally, an online variational inference framework for finite Scaled Dirichlet mixture models is developed by employing a stochastic approximation method in order to improve the scalability of finite mixture models for handling large scale data in real time. The effectiveness of our models is validated with real-life challenging problems including object, texture, and scene categorization, text-based and image-based spam email detection

    Variational Learning for the Inverted Beta-Liouville Mixture Model and Its Application to Text Categorization

    Get PDF
    he finite invert Beta-Liouville mixture model (IBLMM) has recently gained some attention due to its positive data modeling capability. Under the conventional variational inference (VI) framework, the analytically tractable solution to the optimization of the variational posterior distribution cannot be obtained, since the variational object function involves evaluation of intractable moments. With the recently proposed extended variational inference (EVI) framework, a new function is proposed to replace the original variational object function in order to avoid intractable moment computation, so that the analytically tractable solution of the IBLMM can be derived in an effective way. The good performance of the proposed approach is demonstrated by experiments with both synthesized data and a real-world application namely text categorization

    Image annotation and retrieval based on multi-modal feature clustering and similarity propagation.

    Get PDF
    The performance of content-based image retrieval systems has proved to be inherently constrained by the used low level features, and cannot give satisfactory results when the user\u27s high level concepts cannot be expressed by low level features. In an attempt to bridge this semantic gap, recent approaches started integrating both low level-visual features and high-level textual keywords. Unfortunately, manual image annotation is a tedious process and may not be possible for large image databases. In this thesis we propose a system for image retrieval that has three mains components. The first component of our system consists of a novel possibilistic clustering and feature weighting algorithm based on robust modeling of the Generalized Dirichlet (GD) finite mixture. Robust estimation of the mixture model parameters is achieved by incorporating two complementary types of membership degrees. The first one is a posterior probability that indicates the degree to which a point fits the estimated distribution. The second membership represents the degree of typicality and is used to indentify and discard noise points. Robustness to noisy and irrelevant features is achieved by transforming the data to make the features independent and follow Beta distribution, and learning optimal relevance weight for each feature subset within each cluster. We extend our algorithm to find the optimal number of clusters in an unsupervised and efficient way by exploiting some properties of the possibilistic membership function. We also outline a semi-supervised version of the proposed algorithm. In the second component of our system consists of a novel approach to unsupervised image annotation. Our approach is based on: (i) the proposed semi-supervised possibilistic clustering; (ii) a greedy selection and joining algorithm (GSJ); (iii) Bayes rule; and (iv) a probabilistic model that is based on possibilistic memebership degrees to annotate an image. The third component of the proposed system consists of an image retrieval framework based on multi-modal similarity propagation. The proposed framework is designed to deal with two data modalities: low-level visual features and high-level textual keywords generated by our proposed image annotation algorithm. The multi-modal similarity propagation system exploits the mutual reinforcement of relational data and results in a nonlinear combination of the different modalities. Specifically, it is used to learn the semantic similarities between images by leveraging the relationships between features from the different modalities. The proposed image annotation and retrieval approaches are implemented and tested with a standard benchmark dataset. We show the effectiveness of our clustering algorithm to handle high dimensional and noisy data. We compare our proposed image annotation approach to three state-of-the-art methods and demonstrate the effectiveness of the proposed image retrieval system
    corecore