13,651 research outputs found

    One-class classifiers based on entropic spanning graphs

    Get PDF
    One-class classifiers offer valuable tools to assess the presence of outliers in data. In this paper, we propose a design methodology for one-class classifiers based on entropic spanning graphs. Our approach takes into account the possibility to process also non-numeric data by means of an embedding procedure. The spanning graph is learned on the embedded input data and the outcoming partition of vertices defines the classifier. The final partition is derived by exploiting a criterion based on mutual information minimization. Here, we compute the mutual information by using a convenient formulation provided in terms of the α\alpha-Jensen difference. Once training is completed, in order to associate a confidence level with the classifier decision, a graph-based fuzzy model is constructed. The fuzzification process is based only on topological information of the vertices of the entropic spanning graph. As such, the proposed one-class classifier is suitable also for data characterized by complex geometric structures. We provide experiments on well-known benchmarks containing both feature vectors and labeled graphs. In addition, we apply the method to the protein solubility recognition problem by considering several representations for the input samples. Experimental results demonstrate the effectiveness and versatility of the proposed method with respect to other state-of-the-art approaches.Comment: Extended and revised version of the paper "One-Class Classification Through Mutual Information Minimization" presented at the 2016 IEEE IJCNN, Vancouver, Canad

    Relational visual cluster validity

    Get PDF
    The assessment of cluster validity plays a very important role in cluster analysis. Most commonly used cluster validity methods are based on statistical hypothesis testing or finding the best clustering scheme by computing a number of different cluster validity indices. A number of visual methods of cluster validity have been produced to display directly the validity of clusters by mapping data into two- or three-dimensional space. However, these methods may lose too much information to correctly estimate the results of clustering algorithms. Although the visual cluster validity (VCV) method of Hathaway and Bezdek can successfully solve this problem, it can only be applied for object data, i.e. feature measurements. There are very few validity methods that can be used to analyze the validity of data where only a similarity or dissimilarity relation exists – relational data. To tackle this problem, this paper presents a relational visual cluster validity (RVCV) method to assess the validity of clustering relational data. This is done by combining the results of the non-Euclidean relational fuzzy c-means (NERFCM) algorithm with a modification of the VCV method to produce a visual representation of cluster validity. RVCV can cluster complete and incomplete relational data and adds to the visual cluster validity theory. Numeric examples using synthetic and real data are presente

    Anomaly and Change Detection in Graph Streams through Constant-Curvature Manifold Embeddings

    Full text link
    Mapping complex input data into suitable lower dimensional manifolds is a common procedure in machine learning. This step is beneficial mainly for two reasons: (1) it reduces the data dimensionality and (2) it provides a new data representation possibly characterised by convenient geometric properties. Euclidean spaces are by far the most widely used embedding spaces, thanks to their well-understood structure and large availability of consolidated inference methods. However, recent research demonstrated that many types of complex data (e.g., those represented as graphs) are actually better described by non-Euclidean geometries. Here, we investigate how embedding graphs on constant-curvature manifolds (hyper-spherical and hyperbolic manifolds) impacts on the ability to detect changes in sequences of attributed graphs. The proposed methodology consists in embedding graphs into a geometric space and perform change detection there by means of conventional methods for numerical streams. The curvature of the space is a parameter that we learn to reproduce the geometry of the original application-dependent graph space. Preliminary experimental results show the potential capability of representing graphs by means of curved manifold, in particular for change and anomaly detection problems.Comment: To be published in IEEE IJCNN 201

    Designing labeled graph classifiers by exploiting the R\'enyi entropy of the dissimilarity representation

    Full text link
    Representing patterns as labeled graphs is becoming increasingly common in the broad field of computational intelligence. Accordingly, a wide repertoire of pattern recognition tools, such as classifiers and knowledge discovery procedures, are nowadays available and tested for various datasets of labeled graphs. However, the design of effective learning procedures operating in the space of labeled graphs is still a challenging problem, especially from the computational complexity viewpoint. In this paper, we present a major improvement of a general-purpose classifier for graphs, which is conceived on an interplay between dissimilarity representation, clustering, information-theoretic techniques, and evolutionary optimization algorithms. The improvement focuses on a specific key subroutine devised to compress the input data. We prove different theorems which are fundamental to the setting of the parameters controlling such a compression operation. We demonstrate the effectiveness of the resulting classifier by benchmarking the developed variants on well-known datasets of labeled graphs, considering as distinct performance indicators the classification accuracy, computing time, and parsimony in terms of structural complexity of the synthesized classification models. The results show state-of-the-art standards in terms of test set accuracy and a considerable speed-up for what concerns the computing time.Comment: Revised versio

    How Many Dissimilarity/Kernel Self Organizing Map Variants Do We Need?

    Full text link
    In numerous applicative contexts, data are too rich and too complex to be represented by numerical vectors. A general approach to extend machine learning and data mining techniques to such data is to really on a dissimilarity or on a kernel that measures how different or similar two objects are. This approach has been used to define several variants of the Self Organizing Map (SOM). This paper reviews those variants in using a common set of notations in order to outline differences and similarities between them. It discusses the advantages and drawbacks of the variants, as well as the actual relevance of the dissimilarity/kernel SOM for practical applications
    • …
    corecore