381 research outputs found

    On Discrimination Discovery and Removal in Ranked Data using Causal Graph

    Full text link
    Predictive models learned from historical data are widely used to help companies and organizations make decisions. However, they may digitally unfairly treat unwanted groups, raising concerns about fairness and discrimination. In this paper, we study the fairness-aware ranking problem which aims to discover discrimination in ranked datasets and reconstruct the fair ranking. Existing methods in fairness-aware ranking are mainly based on statistical parity that cannot measure the true discriminatory effect since discrimination is causal. On the other hand, existing methods in causal-based anti-discrimination learning focus on classification problems and cannot be directly applied to handle the ranked data. To address these limitations, we propose to map the rank position to a continuous score variable that represents the qualification of the candidates. Then, we build a causal graph that consists of both the discrete profile attributes and the continuous score. The path-specific effect technique is extended to the mixed-variable causal graph to identify both direct and indirect discrimination. The relationship between the path-specific effects for the ranked data and those for the binary decision is theoretically analyzed. Finally, algorithms for discovering and removing discrimination from a ranked dataset are developed. Experiments using the real dataset show the effectiveness of our approaches.Comment: 9 page

    The KL-Divergence between a Graph Model and its Fair I-Projection as a Fairness Regularizer

    Get PDF
    Learning and reasoning over graphs is increasingly done by means of probabilistic models, e.g. exponential random graph models, graph embedding models, and graph neural networks. When graphs are modeling relations between people, however, they will inevitably reflect biases, prejudices, and other forms of inequity and inequality. An important challenge is thus to design accurate graph modeling approaches while guaranteeing fairness according to the specific notion of fairness that the problem requires. Yet, past work on the topic remains scarce, is limited to debiasing specific graph modeling methods, and often aims to ensure fairness in an indirect manner. We propose a generic approach applicable to most probabilistic graph modeling approaches. Specifically, we first define the class of fair graph models corresponding to a chosen set of fairness criteria. Given this, we propose a fairness regularizer defined as the KL-divergence between the graph model and its I-projection onto the set of fair models. We demonstrate that using this fairness regularizer in combination with existing graph modeling approaches efficiently trades-off fairness with accuracy, whereas the state-of-the-art models can only make this trade-off for the fairness criterion that they were specifically designed for
    • …
    corecore